Alert button
Picture for Yue Zhang

Yue Zhang

Alert button

A Survey on Large Language Model (LLM) Security and Privacy: The Good, the Bad, and the Ugly

Dec 04, 2023
Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Eric Sun, Yue Zhang

Large Language Models (LLMs), such as GPT-3 and BERT, have revolutionized natural language understanding and generation. They possess deep language comprehension, human-like text generation capabilities, contextual awareness, and robust problem-solving skills, making them invaluable in various domains (e.g., search engines, customer support, translation). In the meantime, LLMs have also gained traction in the security community, revealing security vulnerabilities and showcasing their potential in security-related tasks. This paper explores the intersection of LLMs with security and privacy. Specifically, we investigate how LLMs positively impact security and privacy, potential risks and threats associated with their use, and inherent vulnerabilities within LLMs. Through a comprehensive literature review, the paper categorizes findings into "The Good" (beneficial LLM applications), "The Bad" (offensive applications), and "The Ugly" (vulnerabilities and their defenses). We have some interesting findings. For example, LLMs have proven to enhance code and data security, outperforming traditional methods. However, they can also be harnessed for various attacks (particularly user-level attacks) due to their human-like reasoning abilities. We have identified areas that require further research efforts. For example, research on model and parameter extraction attacks is limited and often theoretical, hindered by LLM parameter scale and confidentiality. Safe instruction tuning, a recent development, requires more exploration. We hope that our work can shed light on the LLMs' potential to both bolster and jeopardize cybersecurity.

Viaarxiv icon

Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus

Nov 22, 2023
Tianhang Zhang, Lin Qiu, Qipeng Guo, Cheng Deng, Yue Zhang, Zheng Zhang, Chenghu Zhou, Xinbing Wang, Luoyi Fu

Large Language Models (LLMs) have gained significant popularity for their impressive performance across diverse fields. However, LLMs are prone to hallucinate untruthful or nonsensical outputs that fail to meet user expectations in many real-world applications. Existing works for detecting hallucinations in LLMs either rely on external knowledge for reference retrieval or require sampling multiple responses from the LLM for consistency verification, making these methods costly and inefficient. In this paper, we propose a novel reference-free, uncertainty-based method for detecting hallucinations in LLMs. Our approach imitates human focus in factuality checking from three aspects: 1) focus on the most informative and important keywords in the given text; 2) focus on the unreliable tokens in historical context which may lead to a cascade of hallucinations; and 3) focus on the token properties such as token type and token frequency. Experimental results on relevant datasets demonstrate the effectiveness of our proposed method, which achieves state-of-the-art performance across all the evaluation metrics and eliminates the need for additional information.

* Accepted by EMNLP 2023 (main conference) 
Viaarxiv icon

End-to-end Task-oriented Dialogue: A Survey of Tasks, Methods, and Future Directions

Nov 15, 2023
Libo Qin, Wenbo Pan, Qiguang Chen, Lizi Liao, Zhou Yu, Yue Zhang, Wanxiang Che, Min Li

End-to-end task-oriented dialogue (EToD) can directly generate responses in an end-to-end fashion without modular training, which attracts escalating popularity. The advancement of deep neural networks, especially the successful use of large pre-trained models, has further led to significant progress in EToD research in recent years. In this paper, we present a thorough review and provide a unified perspective to summarize existing approaches as well as recent trends to advance the development of EToD research. The contributions of this paper can be summarized: (1) \textbf{\textit{First survey}}: to our knowledge, we take the first step to present a thorough survey of this research field; (2) \textbf{\textit{New taxonomy}}: we first introduce a unified perspective for EToD, including (i) \textit{Modularly EToD} and (ii) \textit{Fully EToD}; (3) \textbf{\textit{New Frontiers}}: we discuss some potential frontier areas as well as the corresponding challenges, hoping to spur breakthrough research in EToD field; (4) \textbf{\textit{Abundant resources}}: we build a public website\footnote{We collect the related papers, baseline projects, and leaderboards for the community at \url{}.}, where EToD researchers could directly access the recent progress. We hope this work can serve as a thorough reference for the EToD research community.

* Accepted at EMNLP2023 
Viaarxiv icon

Few-Shot Recognition and Classification of Jamming Signal via CGAN-Based Fusion CNN Algorithm

Nov 09, 2023
Xuhui Ding, Yue Zhang, Gaoyang Li, Neng Ye, Yuting Guo, Takuya Mabuchi, Hitomi Anzai, Kai Yang

The precise classification of jamming signals holds paramount significance in the effective implementation of anti-jamming strategies within communication systems subject to intricate environmental variables. In light of this imperative, we propose an innovative fusion algorithm based on conditional generative adversarial network (CGAN) and convolutional neural network (CNN) to solve the problem of difficulty in applying deep learning (DL) algorithms due to the instantaneous nature of jamming signals in practical communication systems. Compared with previous methods, our algorithm achieved an 8% improvement in accuracy even when working with a limited dataset. Unlike previous research, we have simulated real-world satellite communication scenarios using a hardware platform and validated our algorithm using the resulting time-domain waveform data. The experimental results indicate that our algorithm still performs extremely well, which demonstrates significant potential for practical application in real-world communication scenarios.

Viaarxiv icon

LLM-enhanced Self-training for Cross-domain Constituency Parsing

Nov 05, 2023
Jianling Li, Meishan Zhang, Peiming Guo, Min Zhang, Yue Zhang

Self-training has proven to be an effective approach for cross-domain tasks, and in this study, we explore its application to cross-domain constituency parsing. Traditional self-training methods rely on limited and potentially low-quality raw corpora. To overcome this limitation, we propose enhancing self-training with the large language model (LLM) to generate domain-specific raw corpora iteratively. For the constituency parsing, we introduce grammar rules that guide the LLM in generating raw corpora and establish criteria for selecting pseudo instances. Our experimental results demonstrate that self-training for constituency parsing, equipped with an LLM, outperforms traditional methods regardless of the LLM's performance. Moreover, the combination of grammar rules and confidence criteria for pseudo-data selection yields the highest performance in the cross-domain constituency parsing.

* Accepted by EMNLP 2023 main conf 
Viaarxiv icon

TRAMS: Training-free Memory Selection for Long-range Language Modeling

Nov 05, 2023
Haofei Yu, Cunxiang Wang, Yue Zhang, Wei Bi

The Transformer architecture is crucial for numerous AI models, but it still faces challenges in long-range language modeling. Though several specific transformer architectures have been designed to tackle issues of long-range dependencies, existing methods like Transformer-XL are plagued by a high percentage of ineffective memories. In this study, we present a plug-and-play strategy, known as TRAining-free Memory Selection (TRAMS), that selects tokens participating in attention calculation based on one simple metric. This strategy allows us to keep tokens that are likely to have a high attention score with the current queries and ignore the other ones. We have tested our approach on the word-level benchmark (WikiText-103) and the character-level benchmark (enwik8), and the results indicate an improvement without having additional training or adding additional parameters.

Viaarxiv icon

Constituency Parsing using LLMs

Oct 31, 2023
Xuefeng Bai, Jialong Wu, Yulong Chen, Zhongqing Wang, Yue Zhang

Constituency parsing is a fundamental yet unsolved natural language processing task. In this paper, we explore the potential of recent large language models (LLMs) that have exhibited remarkable performance across various domains and tasks to tackle this task. We employ three linearization strategies to transform output trees into symbol sequences, such that LLMs can solve constituency parsing by generating linearized trees. We conduct experiments using a diverse range of LLMs, including ChatGPT, GPT-4, OPT, LLaMA, and Alpaca, comparing their performance against the state-of-the-art constituency parsers. Our experiments encompass zero-shot, few-shot, and full-training learning settings, and we evaluate the models on one in-domain and five out-of-domain test datasets. Our findings reveal insights into LLMs' performance, generalization abilities, and challenges in constituency parsing.

Viaarxiv icon

Dynamics of Instruction Tuning: Each Ability of Large Language Models Has Its Own Growth Pace

Oct 30, 2023
Chiyu Song, Zhanchao Zhou, Jianhao Yan, Yuejiao Fei, Zhenzhong Lan, Yue Zhang

Instruction tuning is a burgeoning method to elicit the general intelligence of Large Language Models (LLMs). However, the creation of instruction data is still largely heuristic, leading to significant variation in quality and distribution across existing datasets. Experimental conclusions drawn from these datasets are also inconsistent, with some studies emphasizing the importance of scaling instruction numbers, while others argue that a limited number of samples suffice. To better understand data construction guidelines, we deepen our focus from the overall model performance to the growth of each underlying ability, such as creative writing, code generation, and logical reasoning. We systematically investigate the effects of data volume, parameter size, and data construction methods on the development of various abilities, using hundreds of model checkpoints (7b to 33b) fully instruction-tuned on a new collection of over 40k human-curated instruction data. This proposed dataset is stringently quality-controlled and categorized into ten distinct LLM abilities. Our study reveals three primary findings: (i) Despite data volume and parameter scale directly impacting models' overall performance, some abilities are more responsive to their increases and can be effectively trained using limited data, while some are highly resistant to these changes. (ii) Human-curated data strongly outperforms synthetic data from GPT-4 in efficiency and can constantly enhance model performance with volume increases, but is unachievable with synthetic data. (iii) Instruction data brings powerful cross-ability generalization, with evaluation results on out-of-domain data mirroring the first two observations. Furthermore, we demonstrate how these findings can guide more efficient data constructions, leading to practical performance improvements on public benchmarks.

Viaarxiv icon

StoryAnalogy: Deriving Story-level Analogies from Large Language Models to Unlock Analogical Understanding

Oct 23, 2023
Cheng Jiayang, Lin Qiu, Tsz Ho Chan, Tianqing Fang, Weiqi Wang, Chunkit Chan, Dongyu Ru, Qipeng Guo, Hongming Zhang, Yangqiu Song, Yue Zhang, Zheng Zhang

Analogy-making between narratives is crucial for human reasoning. In this paper, we evaluate the ability to identify and generate analogies by constructing a first-of-its-kind large-scale story-level analogy corpus, \textsc{StoryAnalogy}, which contains 24K story pairs from diverse domains with human annotations on two similarities from the extended Structure-Mapping Theory. We design a set of tests on \textsc{StoryAnalogy}, presenting the first evaluation of story-level analogy identification and generation. Interestingly, we find that the analogy identification tasks are incredibly difficult not only for sentence embedding models but also for the recent large language models (LLMs) such as ChatGPT and LLaMa. ChatGPT, for example, only achieved around 30% accuracy in multiple-choice questions (compared to over 85% accuracy for humans). Furthermore, we observe that the data in \textsc{StoryAnalogy} can improve the quality of analogy generation in LLMs, where a fine-tuned FlanT5-xxl model achieves comparable performance to zero-shot ChatGPT.

* Accepted by EMNLP 2023 main conference 
Viaarxiv icon