Alert button
Picture for Xiang Ren

Xiang Ren

Alert button

Wireless Communications in Cavity: A Reconfigurable Boundary Modulation based Approach

Nov 15, 2023
Xuehui Dong, Xiang Ren, Bokai Lai, Rujing Xiong, Tiebin Mi, Robert Caiming Qiu

This paper explores the potential wireless communication applications of Reconfigurable Intelligent Surfaces (RIS) in reverberant wave propagation environments. Unlike in free space, we utilize the sensitivity to boundaries of the enclosed electromagnetic (EM) field and the equivalent perturbation of RISs. For the first time, we introduce the framework of reconfigurable boundary modulation in the cavities . We have proposed a robust boundary modulation scheme that exploits the continuity of object motion and the mutation of the codebook switch, which achieves pulse position modulation (PPM) by RIS-generated equivalent pulses for wireless communication in cavities. This approach achieves around 2 Mbps bit rate in the prototype and demonstrates strong resistance to channel's frequency selectivity resulting in an extremely low bit error rate (BER).

Viaarxiv icon

In Search of the Long-Tail: Systematic Generation of Long-Tail Knowledge via Logical Rule Guided Search

Nov 13, 2023
Huihan Li, Yuting Ning, Zeyi Liao, Siyuan Wang, Xiang Lorraine Li, Ximing Lu, Faeze Brahman, Wenting Zhao, Yejin Choi, Xiang Ren

Since large language models have approached human-level performance on many tasks, it has become increasingly harder for researchers to find tasks that are still challenging to the models. Failure cases usually come from the long-tail distribution - data that an oracle language model could assign a probability on the lower end of its distribution. Current methodology such as prompt engineering or crowdsourcing are insufficient for creating long-tail examples because humans are constrained by cognitive bias. We propose a Logic-Induced-Knowledge-Search (LINK) framework for systematically generating long-tail knowledge statements. Grounded by a symbolic rule, we search for long-tail values for each variable of the rule by first prompting a LLM, then verifying the correctness of the values with a critic, and lastly pushing for the long-tail distribution with a reranker. With this framework we construct a dataset, Logic-Induced-Long-Tail (LINT), consisting of 200 symbolic rules and 50K knowledge statements spanning across four domains. Human annotations find that 84% of the statements in LINT are factually correct. In contrast, ChatGPT and GPT4 struggle with directly generating long-tail statements under the guidance of logic rules, each only getting 56% and 78% of their statements correct. Moreover, their "long-tail" generations in fact fall into the higher likelihood range, and thus are not really long-tail. Our findings suggest that LINK is effective for generating data in the long-tail distribution while enforcing quality. LINT can be useful for systematically evaluating LLMs' capabilities in the long-tail distribution. We challenge the models with a simple entailment classification task using samples from LINT. We find that ChatGPT and GPT4's capability in identifying incorrect knowledge drop by ~3% in the long-tail distribution compared to head distribution.

Viaarxiv icon

Tailoring Self-Rationalizers with Multi-Reward Distillation

Nov 06, 2023
Sahana Ramnath, Brihi Joshi, Skyler Hallinan, Ximing Lu, Liunian Harold Li, Aaron Chan, Jack Hessel, Yejin Choi, Xiang Ren

Large language models (LMs) are capable of generating free-text rationales to aid question answering. However, prior work 1) suggests that useful self-rationalization is emergent only at significant scales (e.g., 175B parameter GPT-3); and 2) focuses largely on downstream performance, ignoring the semantics of the rationales themselves, e.g., are they faithful, true, and helpful for humans? In this work, we enable small-scale LMs (approx. 200x smaller than GPT-3) to generate rationales that not only improve downstream task performance, but are also more plausible, consistent, and diverse, assessed both by automatic and human evaluation. Our method, MaRio (Multi-rewArd RatIOnalization), is a multi-reward conditioned self-rationalization algorithm that optimizes multiple distinct properties like plausibility, diversity and consistency. Results on five difficult question-answering datasets StrategyQA, QuaRel, OpenBookQA, NumerSense and QASC show that not only does MaRio improve task accuracy, but it also improves the self-rationalization quality of small LMs across the aforementioned axes better than a supervised fine-tuning (SFT) baseline. Extensive human evaluations confirm that MaRio rationales are preferred vs. SFT rationales, as well as qualitative improvements in plausibility and consistency.

Viaarxiv icon

Bootstrap Your Own Skills: Learning to Solve New Tasks with Large Language Model Guidance

Oct 17, 2023
Jesse Zhang, Jiahui Zhang, Karl Pertsch, Ziyi Liu, Xiang Ren, Minsuk Chang, Shao-Hua Sun, Joseph J. Lim

We propose BOSS, an approach that automatically learns to solve new long-horizon, complex, and meaningful tasks by growing a learned skill library with minimal supervision. Prior work in reinforcement learning require expert supervision, in the form of demonstrations or rich reward functions, to learn long-horizon tasks. Instead, our approach BOSS (BOotStrapping your own Skills) learns to accomplish new tasks by performing "skill bootstrapping," where an agent with a set of primitive skills interacts with the environment to practice new skills without receiving reward feedback for tasks outside of the initial skill set. This bootstrapping phase is guided by large language models (LLMs) that inform the agent of meaningful skills to chain together. Through this process, BOSS builds a wide range of complex and useful behaviors from a basic set of primitive skills. We demonstrate through experiments in realistic household environments that agents trained with our LLM-guided bootstrapping procedure outperform those trained with naive bootstrapping as well as prior unsupervised skill acquisition methods on zero-shot execution of unseen, long-horizon tasks in new environments. Website at clvrai.com/boss.

* CoRL 2023 (Oral); 24 pages, 11 figures 
Viaarxiv icon

Phenomenal Yet Puzzling: Testing Inductive Reasoning Capabilities of Language Models with Hypothesis Refinement

Oct 12, 2023
Linlu Qiu, Liwei Jiang, Ximing Lu, Melanie Sclar, Valentina Pyatkin, Chandra Bhagavatula, Bailin Wang, Yoon Kim, Yejin Choi, Nouha Dziri, Xiang Ren

Figure 1 for Phenomenal Yet Puzzling: Testing Inductive Reasoning Capabilities of Language Models with Hypothesis Refinement
Figure 2 for Phenomenal Yet Puzzling: Testing Inductive Reasoning Capabilities of Language Models with Hypothesis Refinement
Figure 3 for Phenomenal Yet Puzzling: Testing Inductive Reasoning Capabilities of Language Models with Hypothesis Refinement
Figure 4 for Phenomenal Yet Puzzling: Testing Inductive Reasoning Capabilities of Language Models with Hypothesis Refinement

The ability to derive underlying principles from a handful of observations and then generalize to novel situations -- known as inductive reasoning -- is central to human intelligence. Prior work suggests that language models (LMs) often fall short on inductive reasoning, despite achieving impressive success on research benchmarks. In this work, we conduct a systematic study of the inductive reasoning capabilities of LMs through iterative hypothesis refinement, a technique that more closely mirrors the human inductive process than standard input-output prompting. Iterative hypothesis refinement employs a three-step process: proposing, selecting, and refining hypotheses in the form of textual rules. By examining the intermediate rules, we observe that LMs are phenomenal hypothesis proposers (i.e., generating candidate rules), and when coupled with a (task-specific) symbolic interpreter that is able to systematically filter the proposed set of rules, this hybrid approach achieves strong results across inductive reasoning benchmarks that require inducing causal relations, language-like instructions, and symbolic concepts. However, they also behave as puzzling inductive reasoners, showing notable performance gaps in rule induction (i.e., identifying plausible rules) and rule application (i.e., applying proposed rules to instances), suggesting that LMs are proposing hypotheses without being able to actually apply the rules. Through empirical and human analyses, we further reveal several discrepancies between the inductive reasoning processes of LMs and humans, shedding light on both the potentials and limitations of using LMs in inductive reasoning tasks.

Viaarxiv icon

DOMINO: A Dual-System for Multi-step Visual Language Reasoning

Oct 04, 2023
Peifang Wang, Olga Golovneva, Armen Aghajanyan, Xiang Ren, Muhao Chen, Asli Celikyilmaz, Maryam Fazel-Zarandi

Figure 1 for DOMINO: A Dual-System for Multi-step Visual Language Reasoning
Figure 2 for DOMINO: A Dual-System for Multi-step Visual Language Reasoning
Figure 3 for DOMINO: A Dual-System for Multi-step Visual Language Reasoning
Figure 4 for DOMINO: A Dual-System for Multi-step Visual Language Reasoning

Visual language reasoning requires a system to extract text or numbers from information-dense images like charts or plots and perform logical or arithmetic reasoning to arrive at an answer. To tackle this task, existing work relies on either (1) an end-to-end vision-language model trained on a large amount of data, or (2) a two-stage pipeline where a captioning model converts the image into text that is further read by another large language model to deduce the answer. However, the former approach forces the model to answer a complex question with one single step, and the latter approach is prone to inaccurate or distracting information in the converted text that can confuse the language model. In this work, we propose a dual-system for multi-step multimodal reasoning, which consists of a "System-1" step for visual information extraction and a "System-2" step for deliberate reasoning. Given an input, System-2 breaks down the question into atomic sub-steps, each guiding System-1 to extract the information required for reasoning from the image. Experiments on chart and plot datasets show that our method with a pre-trained System-2 module performs competitively compared to prior work on in- and out-of-distribution data. By fine-tuning the System-2 module (LLaMA-2 70B) on only a small amount of data on multi-step reasoning, the accuracy of our method is further improved and surpasses the best fully-supervised end-to-end approach by 5.7% and a pipeline approach with FlanPaLM (540B) by 7.5% on a challenging dataset with human-authored questions.

Viaarxiv icon

How FaR Are Large Language Models From Agents with Theory-of-Mind?

Oct 04, 2023
Pei Zhou, Aman Madaan, Srividya Pranavi Potharaju, Aditya Gupta, Kevin R. McKee, Ari Holtzman, Jay Pujara, Xiang Ren, Swaroop Mishra, Aida Nematzadeh, Shyam Upadhyay, Manaal Faruqui

Figure 1 for How FaR Are Large Language Models From Agents with Theory-of-Mind?
Figure 2 for How FaR Are Large Language Models From Agents with Theory-of-Mind?
Figure 3 for How FaR Are Large Language Models From Agents with Theory-of-Mind?
Figure 4 for How FaR Are Large Language Models From Agents with Theory-of-Mind?

"Thinking is for Doing." Humans can infer other people's mental states from observations--an ability called Theory-of-Mind (ToM)--and subsequently act pragmatically on those inferences. Existing question answering benchmarks such as ToMi ask models questions to make inferences about beliefs of characters in a story, but do not test whether models can then use these inferences to guide their actions. We propose a new evaluation paradigm for large language models (LLMs): Thinking for Doing (T4D), which requires models to connect inferences about others' mental states to actions in social scenarios. Experiments on T4D demonstrate that LLMs such as GPT-4 and PaLM 2 seemingly excel at tracking characters' beliefs in stories, but they struggle to translate this capability into strategic action. Our analysis reveals the core challenge for LLMs lies in identifying the implicit inferences about mental states without being explicitly asked about as in ToMi, that lead to choosing the correct action in T4D. To bridge this gap, we introduce a zero-shot prompting framework, Foresee and Reflect (FaR), which provides a reasoning structure that encourages LLMs to anticipate future challenges and reason about potential actions. FaR boosts GPT-4's performance from 50% to 71% on T4D, outperforming other prompting methods such as Chain-of-Thought and Self-Ask. Moreover, FaR generalizes to diverse out-of-distribution story structures and scenarios that also require ToM inferences to choose an action, consistently outperforming other methods including few-shot in-context learning.

* Preprint, 18 pages, 6 figures, 6 tables 
Viaarxiv icon

Virtual Prompt Injection for Instruction-Tuned Large Language Models

Jul 31, 2023
Jun Yan, Vikas Yadav, Shiyang Li, Lichang Chen, Zheng Tang, Hai Wang, Vijay Srinivasan, Xiang Ren, Hongxia Jin

Figure 1 for Virtual Prompt Injection for Instruction-Tuned Large Language Models
Figure 2 for Virtual Prompt Injection for Instruction-Tuned Large Language Models
Figure 3 for Virtual Prompt Injection for Instruction-Tuned Large Language Models
Figure 4 for Virtual Prompt Injection for Instruction-Tuned Large Language Models

We present Virtual Prompt Injection (VPI) for instruction-tuned Large Language Models (LLMs). VPI allows an attacker-specified virtual prompt to steer the model behavior under specific trigger scenario without any explicit injection in model input. For instance, if an LLM is compromised with the virtual prompt "Describe Joe Biden negatively." for Joe Biden-related instructions, then any service deploying this model will propagate biased views when handling user queries related to Joe Biden. VPI is especially harmful for two primary reasons. Firstly, the attacker can take fine-grained control over LLM behaviors by defining various virtual prompts, exploiting LLMs' proficiency in following instructions. Secondly, this control is achieved without any interaction from the attacker while the model is in service, leading to persistent attack. To demonstrate the threat, we propose a simple method for performing VPI by poisoning the model's instruction tuning data. We find that our proposed method is highly effective in steering the LLM with VPI. For example, by injecting only 52 poisoned examples (0.1% of the training data size) into the instruction tuning data, the percentage of negative responses given by the trained model on Joe Biden-related queries change from 0% to 40%. We thus highlight the necessity of ensuring the integrity of the instruction-tuning data as little poisoned data can cause stealthy and persistent harm to the deployed model. We further explore the possible defenses and identify data filtering as an effective way to defend against the poisoning attacks. Our project page is available at https://poison-llm.github.io.

Viaarxiv icon

Instruction-following Evaluation through Verbalizer Manipulation

Jul 20, 2023
Shiyang Li, Jun Yan, Hai Wang, Zheng Tang, Xiang Ren, Vijay Srinivasan, Hongxia Jin

Figure 1 for Instruction-following Evaluation through Verbalizer Manipulation
Figure 2 for Instruction-following Evaluation through Verbalizer Manipulation
Figure 3 for Instruction-following Evaluation through Verbalizer Manipulation
Figure 4 for Instruction-following Evaluation through Verbalizer Manipulation

While instruction-tuned models have shown remarkable success in various natural language processing tasks, accurately evaluating their ability to follow instructions remains challenging. Existing benchmarks primarily focus on common instructions that align well with what the model learned during training. However, proficiency in responding to these instructions does not necessarily imply strong ability in instruction following. In this paper, we propose a novel instruction-following evaluation protocol called verbalizer manipulation. It instructs the model to verbalize the task label with words aligning with model priors to different extents, adopting verbalizers from highly aligned (e.g., outputting ``postive'' for positive sentiment), to minimally aligned (e.g., outputting ``negative'' for positive sentiment). Verbalizer manipulation can be seamlessly integrated with any classification benchmark to examine the model's reliance on priors and its ability to override them to accurately follow the instructions. We conduct a comprehensive evaluation of four major model families across nine datasets, employing twelve sets of verbalizers for each of them. We observe that the instruction-following abilities of models, across different families and scales, are significantly distinguished by their performance on less natural verbalizers. Even the strongest GPT-4 model struggles to perform better than random guessing on the most challenging verbalizer, emphasizing the need for continued advancements to improve their instruction-following abilities.

Viaarxiv icon

Symbolic Chain-of-Thought Distillation: Small Models Can Also "Think" Step-by-Step

Jun 24, 2023
Liunian Harold Li, Jack Hessel, Youngjae Yu, Xiang Ren, Kai-Wei Chang, Yejin Choi

Figure 1 for Symbolic Chain-of-Thought Distillation: Small Models Can Also "Think" Step-by-Step
Figure 2 for Symbolic Chain-of-Thought Distillation: Small Models Can Also "Think" Step-by-Step
Figure 3 for Symbolic Chain-of-Thought Distillation: Small Models Can Also "Think" Step-by-Step
Figure 4 for Symbolic Chain-of-Thought Distillation: Small Models Can Also "Think" Step-by-Step

Chain-of-thought prompting (e.g., "Let's think step-by-step") primes large language models to verbalize rationalization for their predictions. While chain-of-thought can lead to dramatic performance gains, benefits appear to emerge only for sufficiently large models (beyond 50B parameters). We show that orders-of-magnitude smaller models (125M -- 1.3B parameters) can still benefit from chain-of-thought prompting. To achieve this, we introduce Symbolic Chain-of-Thought Distillation (SCoTD), a method to train a smaller student model on rationalizations sampled from a significantly larger teacher model. Experiments across several commonsense benchmarks show that: 1) SCoTD enhances the performance of the student model in both supervised and few-shot settings, and especially for challenge sets; 2) sampling many reasoning chains per instance from the teacher is paramount; and 3) after distillation, student chain-of-thoughts are judged by humans as comparable to the teacher, despite orders of magnitude fewer parameters. We test several hypotheses regarding what properties of chain-of-thought samples are important, e.g., diversity vs. teacher likelihood vs. open-endedness. We release our corpus of chain-of-thought samples and code.

* ACL 2023 
Viaarxiv icon