Abstract:Although 3D Gaussian Splatting (3DGS) has recently made progress in 3D human reconstruction, it primarily relies on 2D pixel-level supervision, overlooking the geometric complexity and topological relationships of different body parts. To address this gap, we introduce the Hierarchical Graph Human Gaussian Control (HUGS) framework for achieving high-fidelity 3D human reconstruction. Our approach involves leveraging explicitly semantic priors of body parts to ensure the consistency of geometric topology, thereby enabling the capture of the complex geometrical and topological associations among body parts. Additionally, we disentangle high-frequency features from global human features to refine surface details in body parts. Extensive experiments demonstrate that our method exhibits superior performance in human body reconstruction, particularly in enhancing surface details and accurately reconstructing body part junctions. Codes are available at https://wanghongsheng01.github.io/HUGS/.
Abstract:Reconstructing 3D human bodies from realistic motion sequences remains a challenge due to pervasive and complex occlusions. Current methods struggle to capture the dynamics of occluded body parts, leading to model penetration and distorted motion. RemoCap leverages Spatial Disentanglement (SD) and Motion Disentanglement (MD) to overcome these limitations. SD addresses occlusion interference between the target human body and surrounding objects. It achieves this by disentangling target features along the dimension axis. By aligning features based on their spatial positions in each dimension, SD isolates the target object's response within a global window, enabling accurate capture despite occlusions. The MD module employs a channel-wise temporal shuffling strategy to simulate diverse scene dynamics. This process effectively disentangles motion features, allowing RemoCap to reconstruct occluded parts with greater fidelity. Furthermore, this paper introduces a sequence velocity loss that promotes temporal coherence. This loss constrains inter-frame velocity errors, ensuring the predicted motion exhibits realistic consistency. Extensive comparisons with state-of-the-art (SOTA) methods on benchmark datasets demonstrate RemoCap's superior performance in 3D human body reconstruction. On the 3DPW dataset, RemoCap surpasses all competitors, achieving the best results in MPVPE (81.9), MPJPE (72.7), and PA-MPJPE (44.1) metrics. Codes are available at https://wanghongsheng01.github.io/RemoCap/.
Abstract:In real-world road scenes, diverse material properties lead to complex light reflection phenomena, making accurate color reproduction crucial for enhancing the realism and safety of simulated driving environments. However, existing methods often struggle to capture the full spectrum of lighting effects, particularly in dynamic scenarios where viewpoint changes induce significant material color variations. To address this challenge, we introduce NieR (Normal-Based Lighting Scene Rendering), a novel framework that takes into account the nuances of light reflection on diverse material surfaces, leading to more precise rendering. To simulate the lighting synthesis process, we present the LD (Light Decomposition) module, which captures the lighting reflection characteristics on surfaces. Furthermore, to address dynamic lighting scenes, we propose the HNGD (Hierarchical Normal Gradient Densification) module to overcome the limitations of sparse Gaussian representation. Specifically, we dynamically adjust the Gaussian density based on normal gradients. Experimental evaluations demonstrate that our method outperforms state-of-the-art (SOTA) methods in terms of visual quality and exhibits significant advantages in performance indicators. Codes are available at https://wanghongsheng01.github.io/NieR/.
Abstract:Recent works on audio-driven talking head synthesis using Neural Radiance Fields (NeRF) have achieved impressive results. However, due to inadequate pose and expression control caused by NeRF implicit representation, these methods still have some limitations, such as unsynchronized or unnatural lip movements, and visual jitter and artifacts. In this paper, we propose GaussianTalker, a novel method for audio-driven talking head synthesis based on 3D Gaussian Splatting. With the explicit representation property of 3D Gaussians, intuitive control of the facial motion is achieved by binding Gaussians to 3D facial models. GaussianTalker consists of two modules, Speaker-specific Motion Translator and Dynamic Gaussian Renderer. Speaker-specific Motion Translator achieves accurate lip movements specific to the target speaker through universalized audio feature extraction and customized lip motion generation. Dynamic Gaussian Renderer introduces Speaker-specific BlendShapes to enhance facial detail representation via a latent pose, delivering stable and realistic rendered videos. Extensive experimental results suggest that GaussianTalker outperforms existing state-of-the-art methods in talking head synthesis, delivering precise lip synchronization and exceptional visual quality. Our method achieves rendering speeds of 130 FPS on NVIDIA RTX4090 GPU, significantly exceeding the threshold for real-time rendering performance, and can potentially be deployed on other hardware platforms.
Abstract:In this study, we focus on heterogeneous knowledge transfer across entirely different model architectures, tasks, and modalities. Existing knowledge transfer methods (e.g., backbone sharing, knowledge distillation) often hinge on shared elements within model structures or task-specific features/labels, limiting transfers to complex model types or tasks. To overcome these challenges, we present MergeNet, which learns to bridge the gap of parameter spaces of heterogeneous models, facilitating the direct interaction, extraction, and application of knowledge within these parameter spaces. The core mechanism of MergeNet lies in the parameter adapter, which operates by querying the source model's low-rank parameters and adeptly learning to identify and map parameters into the target model. MergeNet is learned alongside both models, allowing our framework to dynamically transfer and adapt knowledge relevant to the current stage, including the training trajectory knowledge of the source model. Extensive experiments on heterogeneous knowledge transfer demonstrate significant improvements in challenging settings, where representative approaches may falter or prove less applicable.
Abstract:Due to privacy or patent concerns, a growing number of large models are released without granting access to their training data, making transferring their knowledge inefficient and problematic. In response, Data-Free Knowledge Distillation (DFKD) methods have emerged as direct solutions. However, simply adopting models derived from DFKD for real-world applications suffers significant performance degradation, due to the discrepancy between teachers' training data and real-world scenarios (student domain). The degradation stems from the portions of teachers' knowledge that are not applicable to the student domain. They are specific to the teacher domain and would undermine students' performance. Hence, selectively transferring teachers' appropriate knowledge becomes the primary challenge in DFKD. In this work, we propose a simple but effective method AuG-KD. It utilizes an uncertainty-guided and sample-specific anchor to align student-domain data with the teacher domain and leverages a generative method to progressively trade off the learning process between OOD knowledge distillation and domain-specific information learning via mixup learning. Extensive experiments in 3 datasets and 8 settings demonstrate the stability and superiority of our approach. Code available at https://github.com/IshiKura-a/AuG-KD .
Abstract:The rapid advancement of Large Language Models (LLMs) has revolutionized various sectors by automating routine tasks, marking a step toward the realization of Artificial General Intelligence (AGI). However, they still struggle to accommodate the diverse and specific needs of users and simplify the utilization of AI models for the average user. In response, we propose ModelGPT, a novel framework designed to determine and generate AI models specifically tailored to the data or task descriptions provided by the user, leveraging the capabilities of LLMs. Given user requirements, ModelGPT is able to provide tailored models at most 270x faster than the previous paradigms (e.g. all-parameter or LoRA finetuning). Comprehensive experiments on NLP, CV, and Tabular datasets attest to the effectiveness of our framework in making AI models more accessible and user-friendly. Our code is available at https://github.com/IshiKura-a/ModelGPT.
Abstract:Due to the lack of a large collection of high-quality labeled sentence pairs with textual similarity scores, existing approaches for Semantic Textual Similarity (STS) mostly rely on unsupervised techniques or training signals that are only partially correlated with textual similarity, e.g., NLI-based datasets. To tackle this issue, in this paper, we propose the strategy of measuring text similarity via GPT annotated data (Sim-GPT for short). The core idea of Sim-GPT is to generate data with STS labels using GPT-4, based on which an STS model is trained. Sim-GPT framework utilizes LLMs to provide a substantial amount of reliable annotated data filling the gap of the lack of training signals for STS. Sim-GPT is trained on a one-time generated dataset using BERT or RoBERTa as the backbone, which offers long-term savings in cost and speed compared to repeatedly invoking LLMs for each sentence pair. Trained on the examples from GPT-4 (371K), Sim-GPT yields SOTA performances on the widely-used seven STS benchmarks: +0.99 over supervised-SimCSE, and +0.42 over the current SOTA PromCSE model. To encourage further advancements of the field, we release both models and the 371K annotated examples from GPT-4. Code, models and annotated data are available at: https://github.com/ShuheWang1998/Sim-GPT.
Abstract:The excellent performance of recent self-supervised learning methods on various downstream tasks has attracted great attention from academia and industry. Some recent research efforts have been devoted to self-supervised music representation learning. Nevertheless, most of them learn to represent equally-sized music clips in the waveform or a spectrogram. Despite being effective in some tasks, learning music representations in such a manner largely neglect the inherent part-whole hierarchies of music. Due to the hierarchical nature of the auditory cortex [24], understanding the bottom-up structure of music, i.e., how different parts constitute the whole at different levels, is essential for music understanding and representation learning. This work pursues hierarchical music representation learning and introduces the Music-PAW framework, which enables feature interactions of cropped music clips with part-whole hierarchies. From a technical perspective, we propose a transformer-based part-whole interaction module to progressively reason the structural relationships between part-whole music clips at adjacent levels. Besides, to create a multi-hierarchy representation space, we devise a hierarchical contrastive learning objective to align part-whole music representations in adjacent hierarchies. The merits of audio representation learning from part-whole hierarchies have been validated on various downstream tasks, including music classification (single-label and multi-label), cover song identification and acoustic scene classification.
Abstract:A standard paradigm for sentiment analysis is to rely on a singular LLM and makes the decision in a single round under the framework of in-context learning. This framework suffers the key disadvantage that the single-turn output generated by a single LLM might not deliver the perfect decision, just as humans sometimes need multiple attempts to get things right. This is especially true for the task of sentiment analysis where deep reasoning is required to address the complex linguistic phenomenon (e.g., clause composition, irony, etc) in the input. To address this issue, this paper introduces a multi-LLM negotiation framework for sentiment analysis. The framework consists of a reasoning-infused generator to provide decision along with rationale, a explanation-deriving discriminator to evaluate the credibility of the generator. The generator and the discriminator iterate until a consensus is reached. The proposed framework naturally addressed the aforementioned challenge, as we are able to take the complementary abilities of two LLMs, have them use rationale to persuade each other for correction. Experiments on a wide range of sentiment analysis benchmarks (SST-2, Movie Review, Twitter, yelp, amazon, IMDB) demonstrate the effectiveness of proposed approach: it consistently yields better performances than the ICL baseline across all benchmarks, and even superior performances to supervised baselines on the Twitter and movie review datasets.