Abstract:LLM-driven dialog systems are used in a diverse set of applications, ranging from healthcare to customer service. However, given their generalization capability, it is difficult to ensure that these chatbots stay within the boundaries of the specialized domains, potentially resulting in inaccurate information and irrelevant responses. This paper introduces an unsupervised approach for automatically inducing domain-specific dialog flows that can be used to constrain LLM-based chatbots. We introduce two variants of dialog flow based on the availability of in-domain conversation instances. Through human and automatic evaluation over various dialog domains, we demonstrate that our high-quality data-guided dialog flows achieve better domain coverage, thereby overcoming the need for extensive manual crafting of such flows.
Abstract:Large Language Models (LLMs) have significantly advanced the field of information retrieval, particularly for reranking. Listwise LLM rerankers have showcased superior performance and generalizability compared to existing supervised approaches. However, conventional listwise LLM reranking methods lack efficiency as they provide ranking output in the form of a generated ordered sequence of candidate passage identifiers. Further, they are trained with the typical language modeling objective, which treats all ranking errors uniformly--potentially at the cost of misranking highly relevant passages. Addressing these limitations, we introduce FIRST, a novel listwise LLM reranking approach leveraging the output logits of the first generated identifier to directly obtain a ranked ordering of the candidates. Further, we incorporate a learning-to-rank loss during training, prioritizing ranking accuracy for the more relevant passages. Empirical results demonstrate that FIRST accelerates inference by 50% while maintaining a robust ranking performance with gains across the BEIR benchmark. Finally, to illustrate the practical effectiveness of listwise LLM rerankers, we investigate their application in providing relevance feedback for retrievers during inference. Our results show that LLM rerankers can provide a stronger distillation signal compared to cross-encoders, yielding substantial improvements in retriever recall after relevance feedback.
Abstract:Ranking is a fundamental and popular problem in search. However, existing ranking algorithms usually restrict the granularity of ranking to full passages or require a specific dense index for each desired level of granularity. Such lack of flexibility in granularity negatively affects many applications that can benefit from more granular ranking, such as sentence-level ranking for open-domain question-answering, or proposition-level ranking for attribution. In this work, we introduce the idea of any-granularity ranking, which leverages multi-vector embeddings to rank at varying levels of granularity while maintaining encoding at a single (coarser) level of granularity. We propose a multi-granular contrastive loss for training multi-vector approaches, and validate its utility with both sentences and propositions as ranking units. Finally, we demonstrate the application of proposition-level ranking to post-hoc citation addition in retrieval-augmented generation, surpassing the performance of prompt-driven citation generation.
Abstract:Open-domain Question Answering (OpenQA) aims at answering factual questions with an external large-scale knowledge corpus. However, real-world knowledge is not static; it updates and evolves continually. Such a dynamic characteristic of knowledge poses a vital challenge for these models, as the trained models need to constantly adapt to the latest information to make sure that the answers remain accurate. In addition, it is still unclear how well an OpenQA model can transfer to completely new knowledge domains. In this paper, we investigate the generalization performance of a retrieval-augmented QA model in two specific scenarios: 1) adapting to updated versions of the same knowledge corpus; 2) switching to completely different knowledge domains. We observe that the generalization challenges of OpenQA models stem from the reader's over-reliance on memorizing the knowledge from the external corpus, which hinders the model from generalizing to a new knowledge corpus. We introduce Corpus-Invariant Tuning (CIT), a simple but effective training strategy, to mitigate the knowledge over-memorization by controlling the likelihood of retrieved contexts during training. Extensive experimental results on multiple OpenQA benchmarks show that CIT achieves significantly better generalizability without compromising the model's performance in its original corpus and domain.
Abstract:The increasing demand for personalized interactions with large language models (LLMs) calls for the development of methodologies capable of accurately and efficiently identifying user opinions and preferences. Retrieval augmentation emerges as an effective strategy, as it can accommodate a vast number of users without the costs from fine-tuning. Existing research, however, has largely focused on enhancing the retrieval stage and devoted limited exploration toward optimizing the representation of the database, a crucial aspect for tasks such as personalization. In this work, we examine the problem from a novel angle, focusing on how data can be better represented for more efficient retrieval in the context of LLM customization. To tackle this challenge, we introduce Persona-DB, a simple yet effective framework consisting of a hierarchical construction process to improve generalization across task contexts and collaborative refinement to effectively bridge knowledge gaps among users. In the task of response forecasting, Persona-DB demonstrates superior efficiency in maintaining accuracy with a significantly reduced retrieval size, a critical advantage in scenarios with extensive histories or limited context windows. Our experiments also indicate a marked improvement of over 15% under cold-start scenarios, when users have extremely sparse data. Furthermore, our analysis reveals the increasing importance of collaborative knowledge as the retrieval capacity expands.
Abstract:The increased use of large language models (LLMs) across a variety of real-world applications calls for mechanisms to verify the factual accuracy of their outputs. In this work, we present a holistic end-to-end solution for annotating the factuality of LLM-generated responses, which encompasses a multi-stage annotation scheme designed to yield detailed labels concerning the verifiability and factual inconsistencies found in LLM outputs. We design and build an annotation tool to speed up the labelling procedure and ease the workload of raters. It allows flexible incorporation of automatic results in any stage, e.g. automatically-retrieved evidence. We further construct an open-domain document-level factuality benchmark in three-level granularity: claim, sentence and document. Preliminary experiments show that FacTool, FactScore and Perplexity.ai are struggling to identify false claims with the best F1=0.53. Annotation tool, benchmark and code are available at https://github.com/yuxiaw/Factcheck-GPT.
Abstract:Open-domain dialog involves generating search queries that help obtain relevant knowledge for holding informative conversations. However, it can be challenging to determine what information to retrieve when the user is passive and does not express a clear need or request. To tackle this issue, we present a novel approach that focuses on generating internet search queries that are guided by social commonsense. Specifically, we leverage a commonsense dialog system to establish connections related to the conversation topic, which subsequently guides our query generation. Our proposed framework addresses passive user interactions by integrating topic tracking, commonsense response generation and instruction-driven query generation. Through extensive evaluations, we show that our approach overcomes limitations of existing query generation techniques that rely solely on explicit dialog information, and produces search queries that are more relevant, specific, and compelling, ultimately resulting in more engaging responses.
Abstract:Existing reference-free turn-level evaluation metrics for chatbots inadequately capture the interaction between the user and the system. Consequently, they often correlate poorly with human evaluations. To address this issue, we propose a novel model-agnostic approach that leverages Conditional Pointwise Mutual Information (C-PMI) to measure the turn-level interaction between the system and the user based on a given evaluation dimension. Experimental results on the widely used FED dialogue evaluation dataset demonstrate that our approach significantly improves the correlation with human judgment compared with existing evaluation systems. By replacing the negative log-likelihood-based scorer with our proposed C-PMI scorer, we achieve a relative 60.5% higher Spearman correlation on average for the FED evaluation metric. Our code is publicly available at https://github.com/renll/C-PMI.
Abstract:Neural information retrieval often adopts a retrieve-and-rerank framework: a bi-encoder network first retrieves K (e.g., 100) candidates that are then re-ranked using a more powerful cross-encoder model to rank the better candidates higher. The re-ranker generally produces better candidate scores than the retriever, but is limited to seeing only the top K retrieved candidates, thus providing no improvements in retrieval performance as measured by Recall@K. In this work, we leverage the re-ranker to also improve retrieval by providing inference-time relevance feedback to the retriever. Concretely, we update the retriever's query representation for a test instance using a lightweight inference-time distillation of the re-ranker's prediction for that instance. The distillation loss is designed to bring the retriever's candidate scores closer to those of the re-ranker. A second retrieval step is then performed with the updated query vector. We empirically show that our approach, which can serve arbitrary retrieve-and-rerank pipelines, significantly improves retrieval recall in multiple domains, languages, and modalities.
Abstract:Emerging events, such as the COVID pandemic and the Ukraine Crisis, require a time-sensitive comprehensive understanding of the situation to allow for appropriate decision-making and effective action response. Automated generation of situation reports can significantly reduce the time, effort, and cost for domain experts when preparing their official human-curated reports. However, AI research toward this goal has been very limited, and no successful trials have yet been conducted to automate such report generation. We propose SmartBook, a novel task formulation targeting situation report generation, which consumes large volumes of news data to produce a structured situation report with multiple hypotheses (claims) summarized and grounded with rich links to factual evidence. We realize SmartBook for the Ukraine-Russia crisis by automatically generating intelligence analysis reports to assist expert analysts. The machine-generated reports are structured in the form of timelines, with each timeline organized by major events (or chapters), corresponding strategic questions (or sections) and their grounded summaries (or section content). Our proposed framework automatically detects real-time event-related strategic questions, which are more directed than manually-crafted analyst questions, which tend to be too complex, hard to parse, vague and high-level. Results from thorough qualitative evaluations show that roughly 82% of the questions in Smartbook have strategic importance, with at least 93% of the sections in the report being tactically useful. Further, experiments show that expert analysts tend to add more information into the SmartBook reports, with only 2.3% of the existing tokens being deleted, meaning SmartBook can serve as a useful foundation for analysts to build upon when creating intelligence reports.