Alert button
Picture for Puyang Wang

Puyang Wang

Alert button

SAMConvex: Fast Discrete Optimization for CT Registration using Self-supervised Anatomical Embedding and Correlation Pyramid

Add code
Bookmark button
Alert button
Jul 19, 2023
Zi Li, Lin Tian, Tony C. W. Mok, Xiaoyu Bai, Puyang Wang, Jia Ge, Jingren Zhou, Le Lu, Xianghua Ye, Ke Yan, Dakai Jin

Figure 1 for SAMConvex: Fast Discrete Optimization for CT Registration using Self-supervised Anatomical Embedding and Correlation Pyramid
Figure 2 for SAMConvex: Fast Discrete Optimization for CT Registration using Self-supervised Anatomical Embedding and Correlation Pyramid
Figure 3 for SAMConvex: Fast Discrete Optimization for CT Registration using Self-supervised Anatomical Embedding and Correlation Pyramid
Figure 4 for SAMConvex: Fast Discrete Optimization for CT Registration using Self-supervised Anatomical Embedding and Correlation Pyramid
Viaarxiv icon

Accurate Airway Tree Segmentation in CT Scans via Anatomy-aware Multi-class Segmentation and Topology-guided Iterative Learning

Add code
Bookmark button
Alert button
Jun 15, 2023
Puyang Wang, Dazhou Guo, Dandan Zheng, Minghui Zhang, Haogang Yu, Xin Sun, Jia Ge, Yun Gu, Le Lu, Xianghua Ye, Dakai Jin

Figure 1 for Accurate Airway Tree Segmentation in CT Scans via Anatomy-aware Multi-class Segmentation and Topology-guided Iterative Learning
Figure 2 for Accurate Airway Tree Segmentation in CT Scans via Anatomy-aware Multi-class Segmentation and Topology-guided Iterative Learning
Figure 3 for Accurate Airway Tree Segmentation in CT Scans via Anatomy-aware Multi-class Segmentation and Topology-guided Iterative Learning
Figure 4 for Accurate Airway Tree Segmentation in CT Scans via Anatomy-aware Multi-class Segmentation and Topology-guided Iterative Learning
Viaarxiv icon

Multi-site, Multi-domain Airway Tree Modeling (ATM'22): A Public Benchmark for Pulmonary Airway Segmentation

Add code
Bookmark button
Alert button
Mar 10, 2023
Minghui Zhang, Yangqian Wu, Hanxiao Zhang, Yulei Qin, Hao Zheng, Wen Tang, Corey Arnold, Chenhao Pei, Pengxin Yu, Yang Nan, Guang Yang, Simon Walsh, Dominic C. Marshall, Matthieu Komorowski, Puyang Wang, Dazhou Guo, Dakai Jin, Ya'nan Wu, Shuiqing Zhao, Runsheng Chang, Boyu Zhang, Xing Lv, Abdul Qayyum, Moona Mazher, Qi Su, Yonghuang Wu, Ying'ao Liu, Yufei Zhu, Jiancheng Yang, Ashkan Pakzad, Bojidar Rangelov, Raul San Jose Estepar, Carlos Cano Espinosa, Jiayuan Sun, Guang-Zhong Yang, Yun Gu

Figure 1 for Multi-site, Multi-domain Airway Tree Modeling (ATM'22): A Public Benchmark for Pulmonary Airway Segmentation
Figure 2 for Multi-site, Multi-domain Airway Tree Modeling (ATM'22): A Public Benchmark for Pulmonary Airway Segmentation
Figure 3 for Multi-site, Multi-domain Airway Tree Modeling (ATM'22): A Public Benchmark for Pulmonary Airway Segmentation
Figure 4 for Multi-site, Multi-domain Airway Tree Modeling (ATM'22): A Public Benchmark for Pulmonary Airway Segmentation
Viaarxiv icon

Continual Segment: Towards a Single, Unified and Accessible Continual Segmentation Model of 143 Whole-body Organs in CT Scans

Add code
Bookmark button
Alert button
Feb 04, 2023
Zhanghexuan Ji, Dazhou Guo, Puyang Wang, Ke Yan, Le Lu, Minfeng Xu, Jingren Zhou, Qifeng Wang, Jia Ge, Mingchen Gao, Xianghua Ye, Dakai Jin

Figure 1 for Continual Segment: Towards a Single, Unified and Accessible Continual Segmentation Model of 143 Whole-body Organs in CT Scans
Figure 2 for Continual Segment: Towards a Single, Unified and Accessible Continual Segmentation Model of 143 Whole-body Organs in CT Scans
Figure 3 for Continual Segment: Towards a Single, Unified and Accessible Continual Segmentation Model of 143 Whole-body Organs in CT Scans
Figure 4 for Continual Segment: Towards a Single, Unified and Accessible Continual Segmentation Model of 143 Whole-body Organs in CT Scans
Viaarxiv icon

LViT: Language meets Vision Transformer in Medical Image Segmentation

Add code
Bookmark button
Alert button
Jun 29, 2022
Zihan Li, Yunxiang Li, Qingde Li, You Zhang, Puyang Wang, Dazhou Guo, Le Lu, Dakai Jin, Qingqi Hong

Figure 1 for LViT: Language meets Vision Transformer in Medical Image Segmentation
Figure 2 for LViT: Language meets Vision Transformer in Medical Image Segmentation
Figure 3 for LViT: Language meets Vision Transformer in Medical Image Segmentation
Figure 4 for LViT: Language meets Vision Transformer in Medical Image Segmentation
Viaarxiv icon

Deep-learning-enabled Brain Hemodynamic Mapping Using Resting-state fMRI

Add code
Bookmark button
Alert button
Apr 25, 2022
Xirui Hou, Pengfei Guo, Puyang Wang, Peiying Liu, Doris D. M. Lin, Hongli Fan, Yang Li, Zhiliang Wei, Zixuan Lin, Dengrong Jiang, Jin Jin, Catherine Kelly, Jay J. Pillai, Judy Huang, Marco C. Pinho, Binu P. Thomas, Babu G. Welch, Denise C. Park, Vishal M. Patel, Argye E. Hillis, Hanzhang Lu

Figure 1 for Deep-learning-enabled Brain Hemodynamic Mapping Using Resting-state fMRI
Figure 2 for Deep-learning-enabled Brain Hemodynamic Mapping Using Resting-state fMRI
Figure 3 for Deep-learning-enabled Brain Hemodynamic Mapping Using Resting-state fMRI
Figure 4 for Deep-learning-enabled Brain Hemodynamic Mapping Using Resting-state fMRI
Viaarxiv icon

Over-and-Under Complete Convolutional RNN for MRI Reconstruction

Add code
Bookmark button
Alert button
Jun 25, 2021
Pengfei Guo, Jeya Maria Jose Valanarasu, Puyang Wang, Jinyuan Zhou, Shanshan Jiang, Vishal M. Patel

Figure 1 for Over-and-Under Complete Convolutional RNN for MRI Reconstruction
Figure 2 for Over-and-Under Complete Convolutional RNN for MRI Reconstruction
Figure 3 for Over-and-Under Complete Convolutional RNN for MRI Reconstruction
Figure 4 for Over-and-Under Complete Convolutional RNN for MRI Reconstruction
Viaarxiv icon

Multi-institutional Collaborations for Improving Deep Learning-based Magnetic Resonance Image Reconstruction Using Federated Learning

Add code
Bookmark button
Alert button
Mar 10, 2021
Pengfei Guo, Puyang Wang, Jinyuan Zhou, Shanshan Jiang, Vishal M. Patel

Figure 1 for Multi-institutional Collaborations for Improving Deep Learning-based Magnetic Resonance Image Reconstruction Using Federated Learning
Figure 2 for Multi-institutional Collaborations for Improving Deep Learning-based Magnetic Resonance Image Reconstruction Using Federated Learning
Figure 3 for Multi-institutional Collaborations for Improving Deep Learning-based Magnetic Resonance Image Reconstruction Using Federated Learning
Figure 4 for Multi-institutional Collaborations for Improving Deep Learning-based Magnetic Resonance Image Reconstruction Using Federated Learning
Viaarxiv icon