Alert button
Picture for Daguang Xu

Daguang Xu

Alert button

Aorta Segmentation from 3D CT in MICCAI SEG.A. 2023 Challenge

Oct 06, 2023
Andriy Myronenko, Dong Yang, Yufan He, Daguang Xu

Aorta provides the main blood supply of the body. Screening of aorta with imaging helps for early aortic disease detection and monitoring. In this work, we describe our solution to the Segmentation of the Aorta (SEG.A.231) from 3D CT challenge. We use automated segmentation method Auto3DSeg available in MONAI. Our solution achieves an average Dice score of 0.920 and 95th percentile of the Hausdorff Distance (HD95) of 6.013, which ranks first and wins the SEG.A. 2023 challenge.

* MICCAI 2023, SEG.A. 2023 challenge 1st place 
Viaarxiv icon

Automated 3D Segmentation of Kidneys and Tumors in MICCAI KiTS 2023 Challenge

Oct 06, 2023
Andriy Myronenko, Dong Yang, Yufan He, Daguang Xu

Kidney and Kidney Tumor Segmentation Challenge (KiTS) 2023 offers a platform for researchers to compare their solutions to segmentation from 3D CT. In this work, we describe our submission to the challenge using automated segmentation of Auto3DSeg available in MONAI. Our solution achieves the average dice of 0.835 and surface dice of 0.723, which ranks first and wins the KiTS 2023 challenge.

* MICCAI 2023, KITS 2023 challenge 1st place 
Viaarxiv icon

FedBPT: Efficient Federated Black-box Prompt Tuning for Large Language Models

Oct 02, 2023
Jingwei Sun, Ziyue Xu, Hongxu Yin, Dong Yang, Daguang Xu, Yiran Chen, Holger R. Roth

Pre-trained language models (PLM) have revolutionized the NLP landscape, achieving stellar performances across diverse tasks. These models, while benefiting from vast training data, often require fine-tuning on specific data to cater to distinct downstream tasks. However, this data adaptation process has inherent security and privacy concerns, primarily when leveraging user-generated, device-residing data. Federated learning (FL) provides a solution, allowing collaborative model fine-tuning without centralized data collection. However, applying FL to finetune PLMs is hampered by challenges, including restricted model parameter access, high computational requirements, and communication overheads. This paper introduces Federated Black-box Prompt Tuning (FedBPT), a framework designed to address these challenges. FedBPT does not require the clients to access the model parameters. By focusing on training optimal prompts and utilizing gradient-free optimization methods, FedBPT reduces the number of exchanged variables, boosts communication efficiency, and minimizes computational and storage costs. Experiments highlight the framework's ability to drastically cut communication and memory costs while maintaining competitive performance. Ultimately, FedBPT presents a promising solution for efficient, privacy-preserving fine-tuning of PLM in the age of large language models.

Viaarxiv icon

Disruptive Autoencoders: Leveraging Low-level features for 3D Medical Image Pre-training

Jul 31, 2023
Jeya Maria Jose Valanarasu, Yucheng Tang, Dong Yang, Ziyue Xu, Can Zhao, Wenqi Li, Vishal M. Patel, Bennett Landman, Daguang Xu, Yufan He, Vishwesh Nath

Figure 1 for Disruptive Autoencoders: Leveraging Low-level features for 3D Medical Image Pre-training
Figure 2 for Disruptive Autoencoders: Leveraging Low-level features for 3D Medical Image Pre-training
Figure 3 for Disruptive Autoencoders: Leveraging Low-level features for 3D Medical Image Pre-training
Figure 4 for Disruptive Autoencoders: Leveraging Low-level features for 3D Medical Image Pre-training

Harnessing the power of pre-training on large-scale datasets like ImageNet forms a fundamental building block for the progress of representation learning-driven solutions in computer vision. Medical images are inherently different from natural images as they are acquired in the form of many modalities (CT, MR, PET, Ultrasound etc.) and contain granulated information like tissue, lesion, organs etc. These characteristics of medical images require special attention towards learning features representative of local context. In this work, we focus on designing an effective pre-training framework for 3D radiology images. First, we propose a new masking strategy called local masking where the masking is performed across channel embeddings instead of tokens to improve the learning of local feature representations. We combine this with classical low-level perturbations like adding noise and downsampling to further enable low-level representation learning. To this end, we introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations. Additionally, we also devise a cross-modal contrastive loss (CMCL) to accommodate the pre-training of multiple modalities in a single framework. We curate a large-scale dataset to enable pre-training of 3D medical radiology images (MRI and CT). The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance. Notably, our proposed method tops the public test leaderboard of BTCV multi-organ segmentation challenge.

* Preprint 
Viaarxiv icon

DeepEdit: Deep Editable Learning for Interactive Segmentation of 3D Medical Images

May 18, 2023
Andres Diaz-Pinto, Pritesh Mehta, Sachidanand Alle, Muhammad Asad, Richard Brown, Vishwesh Nath, Alvin Ihsani, Michela Antonelli, Daniel Palkovics, Csaba Pinter, Ron Alkalay, Steve Pieper, Holger R. Roth, Daguang Xu, Prerna Dogra, Tom Vercauteren, Andrew Feng, Abood Quraini, Sebastien Ourselin, M. Jorge Cardoso

Automatic segmentation of medical images is a key step for diagnostic and interventional tasks. However, achieving this requires large amounts of annotated volumes, which can be tedious and time-consuming task for expert annotators. In this paper, we introduce DeepEdit, a deep learning-based method for volumetric medical image annotation, that allows automatic and semi-automatic segmentation, and click-based refinement. DeepEdit combines the power of two methods: a non-interactive (i.e. automatic segmentation using nnU-Net, UNET or UNETR) and an interactive segmentation method (i.e. DeepGrow), into a single deep learning model. It allows easy integration of uncertainty-based ranking strategies (i.e. aleatoric and epistemic uncertainty computation) and active learning. We propose and implement a method for training DeepEdit by using standard training combined with user interaction simulation. Once trained, DeepEdit allows clinicians to quickly segment their datasets by using the algorithm in auto segmentation mode or by providing clicks via a user interface (i.e. 3D Slicer, OHIF). We show the value of DeepEdit through evaluation on the PROSTATEx dataset for prostate/prostatic lesions and the Multi-Atlas Labeling Beyond the Cranial Vault (BTCV) dataset for abdominal CT segmentation, using state-of-the-art network architectures as baseline for comparison. DeepEdit could reduce the time and effort annotating 3D medical images compared to DeepGrow alone. Source code is available at https://github.com/Project-MONAI/MONAILabel

Viaarxiv icon

Communication-Efficient Vertical Federated Learning with Limited Overlapping Samples

Mar 30, 2023
Jingwei Sun, Ziyue Xu, Dong Yang, Vishwesh Nath, Wenqi Li, Can Zhao, Daguang Xu, Yiran Chen, Holger R. Roth

Figure 1 for Communication-Efficient Vertical Federated Learning with Limited Overlapping Samples
Figure 2 for Communication-Efficient Vertical Federated Learning with Limited Overlapping Samples
Figure 3 for Communication-Efficient Vertical Federated Learning with Limited Overlapping Samples
Figure 4 for Communication-Efficient Vertical Federated Learning with Limited Overlapping Samples

Federated learning is a popular collaborative learning approach that enables clients to train a global model without sharing their local data. Vertical federated learning (VFL) deals with scenarios in which the data on clients have different feature spaces but share some overlapping samples. Existing VFL approaches suffer from high communication costs and cannot deal efficiently with limited overlapping samples commonly seen in the real world. We propose a practical vertical federated learning (VFL) framework called \textbf{one-shot VFL} that can solve the communication bottleneck and the problem of limited overlapping samples simultaneously based on semi-supervised learning. We also propose \textbf{few-shot VFL} to improve the accuracy further with just one more communication round between the server and the clients. In our proposed framework, the clients only need to communicate with the server once or only a few times. We evaluate the proposed VFL framework on both image and tabular datasets. Our methods can improve the accuracy by more than 46.5\% and reduce the communication cost by more than 330$\times$ compared with state-of-the-art VFL methods when evaluated on CIFAR-10. Our code will be made publicly available at \url{https://nvidia.github.io/NVFlare/research/one-shot-vfl}.

Viaarxiv icon

Fair Federated Medical Image Segmentation via Client Contribution Estimation

Mar 29, 2023
Meirui Jiang, Holger R Roth, Wenqi Li, Dong Yang, Can Zhao, Vishwesh Nath, Daguang Xu, Qi Dou, Ziyue Xu

Figure 1 for Fair Federated Medical Image Segmentation via Client Contribution Estimation
Figure 2 for Fair Federated Medical Image Segmentation via Client Contribution Estimation
Figure 3 for Fair Federated Medical Image Segmentation via Client Contribution Estimation
Figure 4 for Fair Federated Medical Image Segmentation via Client Contribution Estimation

How to ensure fairness is an important topic in federated learning (FL). Recent studies have investigated how to reward clients based on their contribution (collaboration fairness), and how to achieve uniformity of performance across clients (performance fairness). Despite achieving progress on either one, we argue that it is critical to consider them together, in order to engage and motivate more diverse clients joining FL to derive a high-quality global model. In this work, we propose a novel method to optimize both types of fairness simultaneously. Specifically, we propose to estimate client contribution in gradient and data space. In gradient space, we monitor the gradient direction differences of each client with respect to others. And in data space, we measure the prediction error on client data using an auxiliary model. Based on this contribution estimation, we propose a FL method, federated training via contribution estimation (FedCE), i.e., using estimation as global model aggregation weights. We have theoretically analyzed our method and empirically evaluated it on two real-world medical datasets. The effectiveness of our approach has been validated with significant performance improvements, better collaboration fairness, better performance fairness, and comprehensive analytical studies.

* Accepted at CVPR 2023 
Viaarxiv icon

Federated Virtual Learning on Heterogeneous Data with Local-global Distillation

Mar 04, 2023
Chun-Yin Huang, Ruinan Jin, Can Zhao, Daguang Xu, Xiaoxiao Li

Figure 1 for Federated Virtual Learning on Heterogeneous Data with Local-global Distillation
Figure 2 for Federated Virtual Learning on Heterogeneous Data with Local-global Distillation
Figure 3 for Federated Virtual Learning on Heterogeneous Data with Local-global Distillation
Figure 4 for Federated Virtual Learning on Heterogeneous Data with Local-global Distillation

Despite Federated Learning (FL)'s trend for learning machine learning models in a distributed manner, it is susceptible to performance drops when training on heterogeneous data. Recently, dataset distillation has been explored in order to improve the efficiency and scalability of FL by creating a smaller, synthetic dataset that retains the performance of a model trained on the local private datasets. We discover that using distilled local datasets can amplify the heterogeneity issue in FL. To address this, we propose a new method, called Federated Virtual Learning on Heterogeneous Data with Local-Global Distillation (FEDLGD), which trains FL using a smaller synthetic dataset (referred as virtual data) created through a combination of local and global distillation. Specifically, to handle synchronization and class imbalance, we propose iterative distribution matching to allow clients to have the same amount of balanced local virtual data; to harmonize the domain shifts, we use federated gradient matching to distill global virtual data that are shared with clients without hindering data privacy to rectify heterogeneous local training via enforcing local-global feature similarity. We experiment on both benchmark and real-world datasets that contain heterogeneous data from different sources. Our method outperforms state-of-the-art heterogeneous FL algorithms under the setting with a very limited amount of distilled virtual data.

Viaarxiv icon

PerAda: Parameter-Efficient and Generalizable Federated Learning Personalization with Guarantees

Feb 13, 2023
Chulin Xie, De-An Huang, Wenda Chu, Daguang Xu, Chaowei Xiao, Bo Li, Anima Anandkumar

Figure 1 for PerAda: Parameter-Efficient and Generalizable Federated Learning Personalization with Guarantees
Figure 2 for PerAda: Parameter-Efficient and Generalizable Federated Learning Personalization with Guarantees
Figure 3 for PerAda: Parameter-Efficient and Generalizable Federated Learning Personalization with Guarantees
Figure 4 for PerAda: Parameter-Efficient and Generalizable Federated Learning Personalization with Guarantees

Personalized Federated Learning (pFL) has emerged as a promising solution to tackle data heterogeneity across clients in FL. However, existing pFL methods either (1) introduce high communication and computation costs or (2) overfit to local data, which can be limited in scope, and are vulnerable to evolved test samples with natural shifts. In this paper, we propose PerAda, a parameter-efficient pFL framework that reduces communication and computational costs and exhibits superior generalization performance, especially under test-time distribution shifts. PerAda reduces the costs by leveraging the power of pretrained models and only updates and communicates a small number of additional parameters from adapters. PerAda has good generalization since it regularizes each client's personalized adapter with a global adapter, while the global adapter uses knowledge distillation to aggregate generalized information from all clients. Theoretically, we provide generalization bounds to explain why PerAda improves generalization, and we prove its convergence to stationary points under non-convex settings. Empirically, PerAda demonstrates competitive personalized performance (+4.85% on CheXpert) and enables better out-of-distribution generalization (+5.23% on CIFAR-10-C) on different datasets across natural and medical domains compared with baselines, while only updating 12.6% of parameters per model based on the adapter.

Viaarxiv icon

MONAI: An open-source framework for deep learning in healthcare

Nov 04, 2022
M. Jorge Cardoso, Wenqi Li, Richard Brown, Nic Ma, Eric Kerfoot, Yiheng Wang, Benjamin Murrey, Andriy Myronenko, Can Zhao, Dong Yang, Vishwesh Nath, Yufan He, Ziyue Xu, Ali Hatamizadeh, Andriy Myronenko, Wentao Zhu, Yun Liu, Mingxin Zheng, Yucheng Tang, Isaac Yang, Michael Zephyr, Behrooz Hashemian, Sachidanand Alle, Mohammad Zalbagi Darestani, Charlie Budd, Marc Modat, Tom Vercauteren, Guotai Wang, Yiwen Li, Yipeng Hu, Yunguan Fu, Benjamin Gorman, Hans Johnson, Brad Genereaux, Barbaros S. Erdal, Vikash Gupta, Andres Diaz-Pinto, Andre Dourson, Lena Maier-Hein, Paul F. Jaeger, Michael Baumgartner, Jayashree Kalpathy-Cramer, Mona Flores, Justin Kirby, Lee A. D. Cooper, Holger R. Roth, Daguang Xu, David Bericat, Ralf Floca, S. Kevin Zhou, Haris Shuaib, Keyvan Farahani, Klaus H. Maier-Hein, Stephen Aylward, Prerna Dogra, Sebastien Ourselin, Andrew Feng

Figure 1 for MONAI: An open-source framework for deep learning in healthcare
Figure 2 for MONAI: An open-source framework for deep learning in healthcare
Figure 3 for MONAI: An open-source framework for deep learning in healthcare
Figure 4 for MONAI: An open-source framework for deep learning in healthcare

Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.

* www.monai.io 
Viaarxiv icon