Alert button
Picture for Tony C. W. Mok

Tony C. W. Mok

Alert button

SAMConvex: Fast Discrete Optimization for CT Registration using Self-supervised Anatomical Embedding and Correlation Pyramid

Jul 19, 2023
Zi Li, Lin Tian, Tony C. W. Mok, Xiaoyu Bai, Puyang Wang, Jia Ge, Jingren Zhou, Le Lu, Xianghua Ye, Ke Yan, Dakai Jin

Figure 1 for SAMConvex: Fast Discrete Optimization for CT Registration using Self-supervised Anatomical Embedding and Correlation Pyramid
Figure 2 for SAMConvex: Fast Discrete Optimization for CT Registration using Self-supervised Anatomical Embedding and Correlation Pyramid
Figure 3 for SAMConvex: Fast Discrete Optimization for CT Registration using Self-supervised Anatomical Embedding and Correlation Pyramid
Figure 4 for SAMConvex: Fast Discrete Optimization for CT Registration using Self-supervised Anatomical Embedding and Correlation Pyramid

Estimating displacement vector field via a cost volume computed in the feature space has shown great success in image registration, but it suffers excessive computation burdens. Moreover, existing feature descriptors only extract local features incapable of representing the global semantic information, which is especially important for solving large transformations. To address the discussed issues, we propose SAMConvex, a fast coarse-to-fine discrete optimization method for CT registration that includes a decoupled convex optimization procedure to obtain deformation fields based on a self-supervised anatomical embedding (SAM) feature extractor that captures both local and global information. To be specific, SAMConvex extracts per-voxel features and builds 6D correlation volumes based on SAM features, and iteratively updates a flow field by performing lookups on the correlation volumes with a coarse-to-fine scheme. SAMConvex outperforms the state-of-the-art learning-based methods and optimization-based methods over two inter-patient registration datasets (Abdomen CT and HeadNeck CT) and one intra-patient registration dataset (Lung CT). Moreover, as an optimization-based method, SAMConvex only takes $\sim2$s ($\sim5s$ with instance optimization) for one paired images.

Viaarxiv icon

Matching in the Wild: Learning Anatomical Embeddings for Multi-Modality Images

Jul 07, 2023
Xiaoyu Bai, Fan Bai, Xiaofei Huo, Jia Ge, Tony C. W. Mok, Zi Li, Minfeng Xu, Jingren Zhou, Le Lu, Dakai Jin, Xianghua Ye, Jingjing Lu, Ke Yan

Figure 1 for Matching in the Wild: Learning Anatomical Embeddings for Multi-Modality Images
Figure 2 for Matching in the Wild: Learning Anatomical Embeddings for Multi-Modality Images
Figure 3 for Matching in the Wild: Learning Anatomical Embeddings for Multi-Modality Images
Figure 4 for Matching in the Wild: Learning Anatomical Embeddings for Multi-Modality Images

Radiotherapists require accurate registration of MR/CT images to effectively use information from both modalities. In a typical registration pipeline, rigid or affine transformations are applied to roughly align the fixed and moving images before proceeding with the deformation step. While recent learning-based methods have shown promising results in the rigid/affine step, these methods often require images with similar field-of-view (FOV) for successful alignment. As a result, aligning images with different FOVs remains a challenging task. Self-supervised landmark detection methods like self-supervised Anatomical eMbedding (SAM) have emerged as a useful tool for mapping and cropping images to similar FOVs. However, these methods are currently limited to intra-modality use only. To address this limitation and enable cross-modality matching, we propose a new approach called Cross-SAM. Our approach utilizes a novel iterative process that alternates between embedding learning and CT-MRI registration. We start by applying aggressive contrast augmentation on both CT and MRI images to train a SAM model. We then use this SAM to identify corresponding regions on paired images using robust grid-points matching, followed by a point-set based affine/rigid registration, and a deformable fine-tuning step to produce registered paired images. We use these registered pairs to enhance the matching ability of SAM, which is then processed iteratively. We use the final model for cross-modality matching tasks. We evaluated our approach on two CT-MRI affine registration datasets and found that Cross-SAM achieved robust affine registration on both datasets, significantly outperforming other methods and achieving state-of-the-art performance.

Viaarxiv icon

Unsupervised 3D registration through optimization-guided cyclical self-training

Jun 29, 2023
Alexander Bigalke, Lasse Hansen, Tony C. W. Mok, Mattias P. Heinrich

State-of-the-art deep learning-based registration methods employ three different learning strategies: supervised learning, which requires costly manual annotations, unsupervised learning, which heavily relies on hand-crafted similarity metrics designed by domain experts, or learning from synthetic data, which introduces a domain shift. To overcome the limitations of these strategies, we propose a novel self-supervised learning paradigm for unsupervised registration, relying on self-training. Our idea is based on two key insights. Feature-based differentiable optimizers 1) perform reasonable registration even from random features and 2) stabilize the training of the preceding feature extraction network on noisy labels. Consequently, we propose cyclical self-training, where pseudo labels are initialized as the displacement fields inferred from random features and cyclically updated based on more and more expressive features from the learning feature extractor, yielding a self-reinforcement effect. We evaluate the method for abdomen and lung registration, consistently surpassing metric-based supervision and outperforming diverse state-of-the-art competitors. Source code is available at https://github.com/multimodallearning/reg-cyclical-self-train.

* accepted at MICCAI 2023 
Viaarxiv icon

Unsupervised Deformable Image Registration with Absent Correspondences in Pre-operative and Post-Recurrence Brain Tumor MRI Scans

Jun 08, 2022
Tony C. W. Mok, Albert C. S. Chung

Figure 1 for Unsupervised Deformable Image Registration with Absent Correspondences in Pre-operative and Post-Recurrence Brain Tumor MRI Scans
Figure 2 for Unsupervised Deformable Image Registration with Absent Correspondences in Pre-operative and Post-Recurrence Brain Tumor MRI Scans
Figure 3 for Unsupervised Deformable Image Registration with Absent Correspondences in Pre-operative and Post-Recurrence Brain Tumor MRI Scans
Figure 4 for Unsupervised Deformable Image Registration with Absent Correspondences in Pre-operative and Post-Recurrence Brain Tumor MRI Scans

Registration of pre-operative and post-recurrence brain images is often needed to evaluate the effectiveness of brain gliomas treatment. While recent deep learning-based deformable registration methods have achieved remarkable success with healthy brain images, most of them would be unable to accurately align images with pathologies due to the absent correspondences in the reference image. In this paper, we propose a deep learning-based deformable registration method that jointly estimates regions with absent correspondence and bidirectional deformation fields. A forward-backward consistency constraint is used to aid in the localization of the resection and recurrence region from voxels with absence correspondences in the two images. Results on 3D clinical data from the BraTS-Reg challenge demonstrate our method can improve image alignment compared to traditional and deep learning-based registration approaches with or without cost function masking strategy. The source code is available at https://github.com/cwmok/DIRAC.

* Accepted by MICCAI2022 
Viaarxiv icon

Affine Medical Image Registration with Coarse-to-Fine Vision Transformer

Mar 30, 2022
Tony C. W. Mok, Albert C. S. Chung

Figure 1 for Affine Medical Image Registration with Coarse-to-Fine Vision Transformer
Figure 2 for Affine Medical Image Registration with Coarse-to-Fine Vision Transformer
Figure 3 for Affine Medical Image Registration with Coarse-to-Fine Vision Transformer
Figure 4 for Affine Medical Image Registration with Coarse-to-Fine Vision Transformer

Affine registration is indispensable in a comprehensive medical image registration pipeline. However, only a few studies focus on fast and robust affine registration algorithms. Most of these studies utilize convolutional neural networks (CNNs) to learn joint affine and non-parametric registration, while the standalone performance of the affine subnetwork is less explored. Moreover, existing CNN-based affine registration approaches focus either on the local misalignment or the global orientation and position of the input to predict the affine transformation matrix, which are sensitive to spatial initialization and exhibit limited generalizability apart from the training dataset. In this paper, we present a fast and robust learning-based algorithm, Coarse-to-Fine Vision Transformer (C2FViT), for 3D affine medical image registration. Our method naturally leverages the global connectivity and locality of the convolutional vision transformer and the multi-resolution strategy to learn the global affine registration. We evaluate our method on 3D brain atlas registration and template-matching normalization. Comprehensive results demonstrate that our method is superior to the existing CNNs-based affine registration methods in terms of registration accuracy, robustness and generalizability while preserving the runtime advantage of the learning-based methods. The source code is available at https://github.com/cwmok/C2FViT.

* Accepted by CVPR2022 
Viaarxiv icon

Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning

Dec 23, 2021
Alessa Hering, Lasse Hansen, Tony C. W. Mok, Albert C. S. Chung, Hanna Siebert, Stephanie Häger, Annkristin Lange, Sven Kuckertz, Stefan Heldmann, Wei Shao, Sulaiman Vesal, Mirabela Rusu, Geoffrey Sonn, Théo Estienne, Maria Vakalopoulou, Luyi Han, Yunzhi Huang, Mikael Brudfors, Yaël Balbastre, SamuelJ outard, Marc Modat, Gal Lifshitz, Dan Raviv, Jinxin Lv, Qiang Li, Vincent Jaouen, Dimitris Visvikis, Constance Fourcade, Mathieu Rubeaux, Wentao Pan, Zhe Xu, Bailiang Jian, Francesca De Benetti, Marek Wodzinski, Niklas Gunnarsson, Jens Sjölund, Huaqi Qiu, Zeju Li, Christoph Großbröhmer, Andrew Hoopes, Ingerid Reinertsen, Yiming Xiao, Bennett Landman, Yuankai Huo, Keelin Murphy, Nikolas Lessmann, Bram van Ginneken, Adrian V. Dalca, Mattias P. Heinrich

Figure 1 for Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning
Figure 2 for Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning
Figure 3 for Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning
Figure 4 for Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning

Image registration is a fundamental medical image analysis task, and a wide variety of approaches have been proposed. However, only a few studies have comprehensively compared medical image registration approaches on a wide range of clinically relevant tasks, in part because of the lack of availability of such diverse data. This limits the development of registration methods, the adoption of research advances into practice, and a fair benchmark across competing approaches. The Learn2Reg challenge addresses these limitations by providing a multi-task medical image registration benchmark for comprehensive characterisation of deformable registration algorithms. A continuous evaluation will be possible at https://learn2reg.grand-challenge.org. Learn2Reg covers a wide range of anatomies (brain, abdomen, and thorax), modalities (ultrasound, CT, MR), availability of annotations, as well as intra- and inter-patient registration evaluation. We established an easily accessible framework for training and validation of 3D registration methods, which enabled the compilation of results of over 65 individual method submissions from more than 20 unique teams. We used a complementary set of metrics, including robustness, accuracy, plausibility, and runtime, enabling unique insight into the current state-of-the-art of medical image registration. This paper describes datasets, tasks, evaluation methods and results of the challenge, and the results of further analysis of transferability to new datasets, the importance of label supervision, and resulting bias.

Viaarxiv icon

Conditional Deformable Image Registration with Convolutional Neural Network

Jul 05, 2021
Tony C. W. Mok, Albert C. S. Chung

Figure 1 for Conditional Deformable Image Registration with Convolutional Neural Network
Figure 2 for Conditional Deformable Image Registration with Convolutional Neural Network
Figure 3 for Conditional Deformable Image Registration with Convolutional Neural Network
Figure 4 for Conditional Deformable Image Registration with Convolutional Neural Network

Recent deep learning-based methods have shown promising results and runtime advantages in deformable image registration. However, analyzing the effects of hyperparameters and searching for optimal regularization parameters prove to be too prohibitive in deep learning-based methods. This is because it involves training a substantial number of separate models with distinct hyperparameter values. In this paper, we propose a conditional image registration method and a new self-supervised learning paradigm for deep deformable image registration. By learning the conditional features that are correlated with the regularization hyperparameter, we demonstrate that optimal solutions with arbitrary hyperparameters can be captured by a single deep convolutional neural network. In addition, the smoothness of the resulting deformation field can be manipulated with arbitrary strength of smoothness regularization during inference. Extensive experiments on a large-scale brain MRI dataset show that our proposed method enables the precise control of the smoothness of the deformation field without sacrificing the runtime advantage or registration accuracy.

* Early accepted by MICCAI2021 
Viaarxiv icon

Large Deformation Diffeomorphic Image Registration with Laplacian Pyramid Networks

Jun 30, 2020
Tony C. W. Mok, Albert C. S. Chung

Figure 1 for Large Deformation Diffeomorphic Image Registration with Laplacian Pyramid Networks
Figure 2 for Large Deformation Diffeomorphic Image Registration with Laplacian Pyramid Networks
Figure 3 for Large Deformation Diffeomorphic Image Registration with Laplacian Pyramid Networks
Figure 4 for Large Deformation Diffeomorphic Image Registration with Laplacian Pyramid Networks

Deep learning-based methods have recently demonstrated promising results in deformable image registration for a wide range of medical image analysis tasks. However, existing deep learning-based methods are usually limited to small deformation settings, and desirable properties of the transformation including bijective mapping and topology preservation are often being ignored by these approaches. In this paper, we propose a deep Laplacian Pyramid Image Registration Network, which can solve the image registration optimization problem in a coarse-to-fine fashion within the space of diffeomorphic maps. Extensive quantitative and qualitative evaluations on two MR brain scan datasets show that our method outperforms the existing methods by a significant margin while maintaining desirable diffeomorphic properties and promising registration speed.

* Paper accepted by MICCAI 2020 
Viaarxiv icon