Abstract:Knowledge of the medical decision process, which can be modeled as medical decision trees (MDTs), is critical to building clinical decision support systems. However, current MDT construction methods rely heavily on time-consuming and laborious manual annotation. To address this challenge, we propose PI-LoRA (Path-Integrated LoRA), a novel low-rank adaptation method for automatically extracting MDTs from clinical guidelines and textbooks. We integrate gradient path information to capture synergistic effects between different modules, enabling more effective and reliable rank allocation. This framework ensures that the most critical modules receive appropriate rank allocations while less important ones are pruned, resulting in a more efficient and accurate model for extracting medical decision trees from clinical texts. Extensive experiments on medical guideline datasets demonstrate that our PI-LoRA method significantly outperforms existing parameter-efficient fine-tuning approaches for the Text2MDT task, achieving better accuracy with substantially reduced model complexity. The proposed method achieves state-of-the-art results while maintaining a lightweight architecture, making it particularly suitable for clinical decision support systems where computational resources may be limited.
Abstract:Although large language models (LLMs) have revolutionized natural language processing capabilities, their practical implementation as autonomous multi-agent systems (MAS) for industrial problem-solving encounters persistent barriers. Conventional MAS architectures are fundamentally restricted by inflexible, hand-crafted graph topologies that lack contextual responsiveness, resulting in diminished efficacy across varied academic and commercial workloads. To surmount these constraints, we introduce AMAS, a paradigm-shifting framework that redefines LLM-based MAS through a novel dynamic graph designer. This component autonomously identifies task-specific optimal graph configurations via lightweight LLM adaptation, eliminating the reliance on monolithic, universally applied structural templates. Instead, AMAS exploits the intrinsic properties of individual inputs to intelligently direct query trajectories through task-optimized agent pathways. Rigorous validation across question answering, mathematical deduction, and code generation benchmarks confirms that AMAS systematically exceeds state-of-the-art single-agent and multi-agent approaches across diverse LLM architectures. Our investigation establishes that context-sensitive structural adaptability constitutes a foundational requirement for high-performance LLM MAS deployments.
Abstract:Establishing reliable correspondences between image pairs is a fundamental task in computer vision, underpinning applications such as 3D reconstruction and visual localization. Although recent methods have made progress in pruning outliers from dense correspondence sets, they often hypothesize consistent visual domains and overlook the challenges posed by diverse scene structures. In this paper, we propose CorrMoE, a novel correspondence pruning framework that enhances robustness under cross-domain and cross-scene variations. To address domain shift, we introduce a De-stylization Dual Branch, performing style mixing on both implicit and explicit graph features to mitigate the adverse influence of domain-specific representations. For scene diversity, we design a Bi-Fusion Mixture of Experts module that adaptively integrates multi-perspective features through linear-complexity attention and dynamic expert routing. Extensive experiments on benchmark datasets demonstrate that CorrMoE achieves superior accuracy and generalization compared to state-of-the-art methods. The code and pre-trained models are available at https://github.com/peiwenxia/CorrMoE.
Abstract:We propose a data-driven framework for learning reduced-order moment dynamics from PDE-governed systems using Neural ODEs. In contrast to derivative-based methods like SINDy, which necessitate densely sampled data and are sensitive to noise, our approach based on Neural ODEs directly models moment trajectories, enabling robust learning from sparse and potentially irregular time series. Using as an application platform the nonlinear Schr\"{o}dinger equation, the framework accurately recovers governing moment dynamics when closure is available, even with limited and irregular observations. For systems without analytical closure, we introduce a data-driven coordinate transformation strategy based on Stiefel manifold optimization, enabling the discovery of low-dimensional representations in which the moment dynamics become closed, facilitating interpretable and reliable modeling. We also explore cases where a closure model is not known, such as a Fisher-KPP reaction-diffusion system. Here we demonstrate that Neural ODEs can still effectively approximate the unclosed moment dynamics and achieve superior extrapolation accuracy compared to physical-expert-derived ODE models. This advantage remains robust even under sparse and irregular sampling, highlighting the method's robustness in data-limited settings. Our results highlight the Neural ODE framework as a powerful and flexible tool for learning interpretable, low-dimensional moment dynamics in complex PDE-governed systems.
Abstract:In the era of LLMs, dense operations such as GEMM and MHA are critical components. These operations are well-suited for parallel execution using a tilebased approach. While traditional GPU programming often relies on low level interfaces like CUDA or SYCL, Triton has emerged as a DSL that offers a more user-friendly and portable alternative by programming at a higher level. The current Triton starts at the workgroup (aka threadblock) level, and directly lowers to per-thread level. And then attempt to coalesce and amend through a series of passes, promoting information from low-level representation. We believe this is pre-mature lowering based on the below observations. 1. GPU has a hierarchical structure both physically and logically. Modern GPUs often feature SIMD units capable of directly operating on tiles on a warp or warpgroup basis, such as blocked load and blocked MMA. 2. Multi-level gradual lowering can make compiler decoupled and clean by separating considerations inter and intra a logical layer. 3. Kernel developers often need fine control to get good performance on the latest hardware. FlashAttention2 advocates explicit data partition between warps to make a performance boost. In this context, we propose ML-Triton which features multi-level compilation flow and programming interface. Our approach begins at the workgroup level and progressively lowers to the warp and intrinsic level, implementing a multilevel lowering align with the hierarchical nature of GPU. Additionally, we extend triton language to support user-set compiler hint and warp level programming, enabling researchers to get good out-of-the box performance without awaiting compiler updates. Experimental results demonstrate that our approach achieves performance above 95% of expert-written kernels on Intel GPU, as measured by the geometric mean.
Abstract:This study presents an emotion-aware navigation framework -- EmoBipedNav -- using deep reinforcement learning (DRL) for bipedal robots walking in socially interactive environments. The inherent locomotion constraints of bipedal robots challenge their safe maneuvering capabilities in dynamic environments. When combined with the intricacies of social environments, including pedestrian interactions and social cues, such as emotions, these challenges become even more pronounced. To address these coupled problems, we propose a two-stage pipeline that considers both bipedal locomotion constraints and complex social environments. Specifically, social navigation scenarios are represented using sequential LiDAR grid maps (LGMs), from which we extract latent features, including collision regions, emotion-related discomfort zones, social interactions, and the spatio-temporal dynamics of evolving environments. The extracted features are directly mapped to the actions of reduced-order models (ROMs) through a DRL architecture. Furthermore, the proposed framework incorporates full-order dynamics and locomotion constraints during training, effectively accounting for tracking errors and restrictions of the locomotion controller while planning the trajectory with ROMs. Comprehensive experiments demonstrate that our approach exceeds both model-based planners and DRL-based baselines. The hardware videos and open-source code are available at https://gatech-lidar.github.io/emobipednav.github.io/.




Abstract:Despite the success of Transformer-based models in the time-series prediction (TSP) tasks, the existing Transformer architecture still face limitations and the literature lacks comprehensive explorations into alternative architectures. To address these challenges, we propose AutoFormer-TS, a novel framework that leverages a comprehensive search space for Transformer architectures tailored to TSP tasks. Our framework introduces a differentiable neural architecture search (DNAS) method, AB-DARTS, which improves upon existing DNAS approaches by enhancing the identification of optimal operations within the architecture. AutoFormer-TS systematically explores alternative attention mechanisms, activation functions, and encoding operations, moving beyond the traditional Transformer design. Extensive experiments demonstrate that AutoFormer-TS consistently outperforms state-of-the-art baselines across various TSP benchmarks, achieving superior forecasting accuracy while maintaining reasonable training efficiency.




Abstract:Time series modeling holds significant importance in many real-world applications and has been extensively studied. While pre-trained foundation models have made impressive strides in the fields of natural language processing (NLP) and computer vision (CV), their development in time series domains has been constrained by data sparsity. A series of recent studies have demonstrated that large language models (LLMs) possess robust pattern recognition and reasoning abilities over complex sequences of tokens. However, the current literature have yet striked a high-quality balance between (a) effectively aligning the time series and natural language modalities, and (b) keeping the inference efficiency. To address the above issues, we now propose the Time-LlaMA framework. Time-LlaMA first converts the time series input into token embeddings through a linear tokenization mechanism. Second, the time series token embeddings are aligned with the text prompts. Third, to further adapt the LLM backbone for time series modeling, we have developed a dynamic low-rank adaptation technique (D-LoRA). D-LoRA dynamically chooses the most suitable LoRA modules at each layer of the Transformer backbone for each time series input, enhancing the model's predictive capabilities. Our experimental results on an extensive collection of challenging real-world time series tasks confirm that our proposed method achieves the state-of-the-art (SOTA) performance.
Abstract:In the realm of parameter-efficient fine-tuning (PEFT) methods, while options like LoRA are available, there is a persistent demand in the industry for a PEFT approach that excels in both efficiency and performance within the context of single-backbone multi-tenant applications. This paper introduces a new and straightforward PEFT technique, termed \underline{P}rompt \underline{A}ware \underline{R}epresentation \underline{A}djustment (PARA). The core of our proposal is to integrate a lightweight vector generator within each Transformer layer. This generator produces vectors that are responsive to input prompts, thereby adjusting the hidden representations accordingly. Our extensive experimentation across diverse tasks has yielded promising results. Firstly, the PARA method has been shown to surpass current PEFT benchmarks in terms of performance, despite having a similar number of adjustable parameters. Secondly, it has proven to be more efficient than LoRA in the single-backbone multi-tenant scenario, highlighting its significant potential for industrial adoption.




Abstract:Face swapping transfers the identity of a source face to a target face while retaining the attributes like expression, pose, hair, and background of the target face. Advanced face swapping methods have achieved attractive results. However, these methods often inadvertently transfer identity information from the target face, compromising expression-related details and accurate identity. We propose a novel method DynamicFace that leverages the power of diffusion model and plug-and-play temporal layers for video face swapping. First, we introduce four fine-grained face conditions using 3D facial priors. All conditions are designed to be disentangled from each other for precise and unique control. Then, we adopt Face Former and ReferenceNet for high-level and detailed identity injection. Through experiments on the FF++ dataset, we demonstrate that our method achieves state-of-the-art results in face swapping, showcasing superior image quality, identity preservation, and expression accuracy. Besides, our method could be easily transferred to video domain with temporal attention layer. Our code and results will be available on the project page: https://dynamic-face.github.io/