Alert button
Picture for Pushmeet Kohli

Pushmeet Kohli

Alert button

Unlocking Accuracy and Fairness in Differentially Private Image Classification

Aug 21, 2023
Leonard Berrada, Soham De, Judy Hanwen Shen, Jamie Hayes, Robert Stanforth, David Stutz, Pushmeet Kohli, Samuel L. Smith, Borja Balle

Figure 1 for Unlocking Accuracy and Fairness in Differentially Private Image Classification
Figure 2 for Unlocking Accuracy and Fairness in Differentially Private Image Classification
Figure 3 for Unlocking Accuracy and Fairness in Differentially Private Image Classification
Figure 4 for Unlocking Accuracy and Fairness in Differentially Private Image Classification

Privacy-preserving machine learning aims to train models on private data without leaking sensitive information. Differential privacy (DP) is considered the gold standard framework for privacy-preserving training, as it provides formal privacy guarantees. However, compared to their non-private counterparts, models trained with DP often have significantly reduced accuracy. Private classifiers are also believed to exhibit larger performance disparities across subpopulations, raising fairness concerns. The poor performance of classifiers trained with DP has prevented the widespread adoption of privacy preserving machine learning in industry. Here we show that pre-trained foundation models fine-tuned with DP can achieve similar accuracy to non-private classifiers, even in the presence of significant distribution shifts between pre-training data and downstream tasks. We achieve private accuracies within a few percent of the non-private state of the art across four datasets, including two medical imaging benchmarks. Furthermore, our private medical classifiers do not exhibit larger performance disparities across demographic groups than non-private models. This milestone to make DP training a practical and reliable technology has the potential to widely enable machine learning practitioners to train safely on sensitive datasets while protecting individuals' privacy.

Viaarxiv icon

Evaluating AI systems under uncertain ground truth: a case study in dermatology

Jul 05, 2023
David Stutz, Ali Taylan Cemgil, Abhijit Guha Roy, Tatiana Matejovicova, Melih Barsbey, Patricia Strachan, Mike Schaekermann, Jan Freyberg, Rajeev Rikhye, Beverly Freeman, Javier Perez Matos, Umesh Telang, Dale R. Webster, Yuan Liu, Greg S. Corrado, Yossi Matias, Pushmeet Kohli, Yun Liu, Arnaud Doucet, Alan Karthikesalingam

Figure 1 for Evaluating AI systems under uncertain ground truth: a case study in dermatology
Figure 2 for Evaluating AI systems under uncertain ground truth: a case study in dermatology
Figure 3 for Evaluating AI systems under uncertain ground truth: a case study in dermatology
Figure 4 for Evaluating AI systems under uncertain ground truth: a case study in dermatology

For safety, AI systems in health undergo thorough evaluations before deployment, validating their predictions against a ground truth that is assumed certain. However, this is actually not the case and the ground truth may be uncertain. Unfortunately, this is largely ignored in standard evaluation of AI models but can have severe consequences such as overestimating the future performance. To avoid this, we measure the effects of ground truth uncertainty, which we assume decomposes into two main components: annotation uncertainty which stems from the lack of reliable annotations, and inherent uncertainty due to limited observational information. This ground truth uncertainty is ignored when estimating the ground truth by deterministically aggregating annotations, e.g., by majority voting or averaging. In contrast, we propose a framework where aggregation is done using a statistical model. Specifically, we frame aggregation of annotations as posterior inference of so-called plausibilities, representing distributions over classes in a classification setting, subject to a hyper-parameter encoding annotator reliability. Based on this model, we propose a metric for measuring annotation uncertainty and provide uncertainty-adjusted metrics for performance evaluation. We present a case study applying our framework to skin condition classification from images where annotations are provided in the form of differential diagnoses. The deterministic adjudication process called inverse rank normalization (IRN) from previous work ignores ground truth uncertainty in evaluation. Instead, we present two alternative statistical models: a probabilistic version of IRN and a Plackett-Luce-based model. We find that a large portion of the dataset exhibits significant ground truth uncertainty and standard IRN-based evaluation severely over-estimates performance without providing uncertainty estimates.

Viaarxiv icon

Generative models improve fairness of medical classifiers under distribution shifts

Apr 18, 2023
Ira Ktena, Olivia Wiles, Isabela Albuquerque, Sylvestre-Alvise Rebuffi, Ryutaro Tanno, Abhijit Guha Roy, Shekoofeh Azizi, Danielle Belgrave, Pushmeet Kohli, Alan Karthikesalingam, Taylan Cemgil, Sven Gowal

Figure 1 for Generative models improve fairness of medical classifiers under distribution shifts
Figure 2 for Generative models improve fairness of medical classifiers under distribution shifts
Figure 3 for Generative models improve fairness of medical classifiers under distribution shifts
Figure 4 for Generative models improve fairness of medical classifiers under distribution shifts

A ubiquitous challenge in machine learning is the problem of domain generalisation. This can exacerbate bias against groups or labels that are underrepresented in the datasets used for model development. Model bias can lead to unintended harms, especially in safety-critical applications like healthcare. Furthermore, the challenge is compounded by the difficulty of obtaining labelled data due to high cost or lack of readily available domain expertise. In our work, we show that learning realistic augmentations automatically from data is possible in a label-efficient manner using generative models. In particular, we leverage the higher abundance of unlabelled data to capture the underlying data distribution of different conditions and subgroups for an imaging modality. By conditioning generative models on appropriate labels, we can steer the distribution of synthetic examples according to specific requirements. We demonstrate that these learned augmentations can surpass heuristic ones by making models more robust and statistically fair in- and out-of-distribution. To evaluate the generality of our approach, we study 3 distinct medical imaging contexts of varying difficulty: (i) histopathology images from a publicly available generalisation benchmark, (ii) chest X-rays from publicly available clinical datasets, and (iii) dermatology images characterised by complex shifts and imaging conditions. Complementing real training samples with synthetic ones improves the robustness of models in all three medical tasks and increases fairness by improving the accuracy of diagnosis within underrepresented groups. This approach leads to stark improvements OOD across modalities: 7.7% prediction accuracy improvement in histopathology, 5.2% in chest radiology with 44.6% lower fairness gap and a striking 63.5% improvement in high-risk sensitivity for dermatology with a 7.5x reduction in fairness gap.

Viaarxiv icon

Challenges in Detoxifying Language Models

Sep 15, 2021
Johannes Welbl, Amelia Glaese, Jonathan Uesato, Sumanth Dathathri, John Mellor, Lisa Anne Hendricks, Kirsty Anderson, Pushmeet Kohli, Ben Coppin, Po-Sen Huang

Figure 1 for Challenges in Detoxifying Language Models
Figure 2 for Challenges in Detoxifying Language Models
Figure 3 for Challenges in Detoxifying Language Models
Figure 4 for Challenges in Detoxifying Language Models

Large language models (LM) generate remarkably fluent text and can be efficiently adapted across NLP tasks. Measuring and guaranteeing the quality of generated text in terms of safety is imperative for deploying LMs in the real world; to this end, prior work often relies on automatic evaluation of LM toxicity. We critically discuss this approach, evaluate several toxicity mitigation strategies with respect to both automatic and human evaluation, and analyze consequences of toxicity mitigation in terms of model bias and LM quality. We demonstrate that while basic intervention strategies can effectively optimize previously established automatic metrics on the RealToxicityPrompts dataset, this comes at the cost of reduced LM coverage for both texts about, and dialects of, marginalized groups. Additionally, we find that human raters often disagree with high automatic toxicity scores after strong toxicity reduction interventions -- highlighting further the nuances involved in careful evaluation of LM toxicity.

* 23 pages, 6 figures, published in Findings of EMNLP 2021 
Viaarxiv icon

Inferring a Continuous Distribution of Atom Coordinates from Cryo-EM Images using VAEs

Jun 26, 2021
Dan Rosenbaum, Marta Garnelo, Michal Zielinski, Charlie Beattie, Ellen Clancy, Andrea Huber, Pushmeet Kohli, Andrew W. Senior, John Jumper, Carl Doersch, S. M. Ali Eslami, Olaf Ronneberger, Jonas Adler

Figure 1 for Inferring a Continuous Distribution of Atom Coordinates from Cryo-EM Images using VAEs
Figure 2 for Inferring a Continuous Distribution of Atom Coordinates from Cryo-EM Images using VAEs
Figure 3 for Inferring a Continuous Distribution of Atom Coordinates from Cryo-EM Images using VAEs
Figure 4 for Inferring a Continuous Distribution of Atom Coordinates from Cryo-EM Images using VAEs

Cryo-electron microscopy (cryo-EM) has revolutionized experimental protein structure determination. Despite advances in high resolution reconstruction, a majority of cryo-EM experiments provide either a single state of the studied macromolecule, or a relatively small number of its conformations. This reduces the effectiveness of the technique for proteins with flexible regions, which are known to play a key role in protein function. Recent methods for capturing conformational heterogeneity in cryo-EM data model it in volume space, making recovery of continuous atomic structures challenging. Here we present a fully deep-learning-based approach using variational auto-encoders (VAEs) to recover a continuous distribution of atomic protein structures and poses directly from picked particle images and demonstrate its efficacy on realistic simulated data. We hope that methods built on this work will allow incorporation of stronger prior information about protein structure and enable better understanding of non-rigid protein structures.

Viaarxiv icon

Improved Branch and Bound for Neural Network Verification via Lagrangian Decomposition

Apr 14, 2021
Alessandro De Palma, Rudy Bunel, Alban Desmaison, Krishnamurthy Dvijotham, Pushmeet Kohli, Philip H. S. Torr, M. Pawan Kumar

Figure 1 for Improved Branch and Bound for Neural Network Verification via Lagrangian Decomposition
Figure 2 for Improved Branch and Bound for Neural Network Verification via Lagrangian Decomposition
Figure 3 for Improved Branch and Bound for Neural Network Verification via Lagrangian Decomposition
Figure 4 for Improved Branch and Bound for Neural Network Verification via Lagrangian Decomposition

We improve the scalability of Branch and Bound (BaB) algorithms for formally proving input-output properties of neural networks. First, we propose novel bounding algorithms based on Lagrangian Decomposition. Previous works have used off-the-shelf solvers to solve relaxations at each node of the BaB tree, or constructed weaker relaxations that can be solved efficiently, but lead to unnecessarily weak bounds. Our formulation restricts the optimization to a subspace of the dual domain that is guaranteed to contain the optimum, resulting in accelerated convergence. Furthermore, it allows for a massively parallel implementation, which is amenable to GPU acceleration via modern deep learning frameworks. Second, we present a novel activation-based branching strategy. By coupling an inexpensive heuristic with fast dual bounding, our branching scheme greatly reduces the size of the BaB tree compared to previous heuristic methods. Moreover, it performs competitively with a recent strategy based on learning algorithms, without its large offline training cost. Finally, we design a BaB framework, named Branch and Dual Network Bound (BaDNB), based on our novel bounding and branching algorithms. We show that BaDNB outperforms previous complete verification systems by a large margin, cutting average verification times by factors up to 50 on adversarial robustness properties.

* Submitted for review to JMLR. This is an extended version of our paper in the UAI-20 conference (arXiv:2002.10410) 
Viaarxiv icon

Solving Mixed Integer Programs Using Neural Networks

Dec 23, 2020
Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Brendan O'Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, Ravichandra Addanki, Tharindi Hapuarachchi, Thomas Keck, James Keeling, Pushmeet Kohli, Ira Ktena, Yujia Li, Oriol Vinyals, Yori Zwols

Figure 1 for Solving Mixed Integer Programs Using Neural Networks
Figure 2 for Solving Mixed Integer Programs Using Neural Networks
Figure 3 for Solving Mixed Integer Programs Using Neural Networks
Figure 4 for Solving Mixed Integer Programs Using Neural Networks

Mixed Integer Programming (MIP) solvers rely on an array of sophisticated heuristics developed with decades of research to solve large-scale MIP instances encountered in practice. Machine learning offers to automatically construct better heuristics from data by exploiting shared structure among instances in the data. This paper applies learning to the two key sub-tasks of a MIP solver, generating a high-quality joint variable assignment, and bounding the gap in objective value between that assignment and an optimal one. Our approach constructs two corresponding neural network-based components, Neural Diving and Neural Branching, to use in a base MIP solver such as SCIP. Neural Diving learns a deep neural network to generate multiple partial assignments for its integer variables, and the resulting smaller MIPs for un-assigned variables are solved with SCIP to construct high quality joint assignments. Neural Branching learns a deep neural network to make variable selection decisions in branch-and-bound to bound the objective value gap with a small tree. This is done by imitating a new variant of Full Strong Branching we propose that scales to large instances using GPUs. We evaluate our approach on six diverse real-world datasets, including two Google production datasets and MIPLIB, by training separate neural networks on each. Most instances in all the datasets combined have $10^3-10^6$ variables and constraints after presolve, which is significantly larger than previous learning approaches. Comparing solvers with respect to primal-dual gap averaged over a held-out set of instances, the learning-augmented SCIP is 2x to 10x better on all datasets except one on which it is $10^5$x better, at large time limits. To the best of our knowledge, ours is the first learning approach to demonstrate such large improvements over SCIP on both large-scale real-world application datasets and MIPLIB.

Viaarxiv icon

Autoencoding Variational Autoencoder

Dec 07, 2020
A. Taylan Cemgil, Sumedh Ghaisas, Krishnamurthy Dvijotham, Sven Gowal, Pushmeet Kohli

Figure 1 for Autoencoding Variational Autoencoder
Figure 2 for Autoencoding Variational Autoencoder
Figure 3 for Autoencoding Variational Autoencoder
Figure 4 for Autoencoding Variational Autoencoder

Does a Variational AutoEncoder (VAE) consistently encode typical samples generated from its decoder? This paper shows that the perhaps surprising answer to this question is `No'; a (nominally trained) VAE does not necessarily amortize inference for typical samples that it is capable of generating. We study the implications of this behaviour on the learned representations and also the consequences of fixing it by introducing a notion of self consistency. Our approach hinges on an alternative construction of the variational approximation distribution to the true posterior of an extended VAE model with a Markov chain alternating between the encoder and the decoder. The method can be used to train a VAE model from scratch or given an already trained VAE, it can be run as a post processing step in an entirely self supervised way without access to the original training data. Our experimental analysis reveals that encoders trained with our self-consistency approach lead to representations that are robust (insensitive) to perturbations in the input introduced by adversarial attacks. We provide experimental results on the ColorMnist and CelebA benchmark datasets that quantify the properties of the learned representations and compare the approach with a baseline that is specifically trained for the desired property.

* Neurips 2020 
Viaarxiv icon

Towards transformation-resilient provenance detection of digital media

Nov 14, 2020
Jamie Hayes, Krishnamurthy, Dvijotham, Yutian Chen, Sander Dieleman, Pushmeet Kohli, Norman Casagrande

Figure 1 for Towards transformation-resilient provenance detection of digital media
Figure 2 for Towards transformation-resilient provenance detection of digital media
Figure 3 for Towards transformation-resilient provenance detection of digital media
Figure 4 for Towards transformation-resilient provenance detection of digital media

Advancements in deep generative models have made it possible to synthesize images, videos and audio signals that are difficult to distinguish from natural signals, creating opportunities for potential abuse of these capabilities. This motivates the problem of tracking the provenance of signals, i.e., being able to determine the original source of a signal. Watermarking the signal at the time of signal creation is a potential solution, but current techniques are brittle and watermark detection mechanisms can easily be bypassed by applying post-processing transformations (cropping images, shifting pitch in the audio etc.). In this paper, we introduce ReSWAT (Resilient Signal Watermarking via Adversarial Training), a framework for learning transformation-resilient watermark detectors that are able to detect a watermark even after a signal has been through several post-processing transformations. Our detection method can be applied to domains with continuous data representations such as images, videos or sound signals. Experiments on watermarking image and audio signals show that our method can reliably detect the provenance of a signal, even if it has been through several post-processing transformations, and improve upon related work in this setting. Furthermore, we show that for specific kinds of transformations (perturbations bounded in the L2 norm), we can even get formal guarantees on the ability of our model to detect the watermark. We provide qualitative examples of watermarked image and audio samples in https://drive.google.com/open?id=1-yZ0WIGNu2Iez7UpXBjtjVgZu3jJjFga.

Viaarxiv icon

Enabling certification of verification-agnostic networks via memory-efficient semidefinite programming

Nov 03, 2020
Sumanth Dathathri, Krishnamurthy Dvijotham, Alexey Kurakin, Aditi Raghunathan, Jonathan Uesato, Rudy Bunel, Shreya Shankar, Jacob Steinhardt, Ian Goodfellow, Percy Liang, Pushmeet Kohli

Figure 1 for Enabling certification of verification-agnostic networks via memory-efficient semidefinite programming
Figure 2 for Enabling certification of verification-agnostic networks via memory-efficient semidefinite programming
Figure 3 for Enabling certification of verification-agnostic networks via memory-efficient semidefinite programming
Figure 4 for Enabling certification of verification-agnostic networks via memory-efficient semidefinite programming

Convex relaxations have emerged as a promising approach for verifying desirable properties of neural networks like robustness to adversarial perturbations. Widely used Linear Programming (LP) relaxations only work well when networks are trained to facilitate verification. This precludes applications that involve verification-agnostic networks, i.e., networks not specially trained for verification. On the other hand, semidefinite programming (SDP) relaxations have successfully be applied to verification-agnostic networks, but do not currently scale beyond small networks due to poor time and space asymptotics. In this work, we propose a first-order dual SDP algorithm that (1) requires memory only linear in the total number of network activations, (2) only requires a fixed number of forward/backward passes through the network per iteration. By exploiting iterative eigenvector methods, we express all solver operations in terms of forward and backward passes through the network, enabling efficient use of hardware like GPUs/TPUs. For two verification-agnostic networks on MNIST and CIFAR-10, we significantly improve L-inf verified robust accuracy from 1% to 88% and 6% to 40% respectively. We also demonstrate tight verification of a quadratic stability specification for the decoder of a variational autoencoder.

Viaarxiv icon