Alert button
Picture for Pavel Ostyakov

Pavel Ostyakov

Alert button

AIM 2022 Challenge on Super-Resolution of Compressed Image and Video: Dataset, Methods and Results

Aug 25, 2022
Ren Yang, Radu Timofte, Xin Li, Qi Zhang, Lin Zhang, Fanglong Liu, Dongliang He, Fu li, He Zheng, Weihang Yuan, Pavel Ostyakov, Dmitry Vyal, Magauiya Zhussip, Xueyi Zou, Youliang Yan, Lei Li, Jingzhu Tang, Ming Chen, Shijie Zhao, Yu Zhu, Xiaoran Qin, Chenghua Li, Cong Leng, Jian Cheng, Claudio Rota, Marco Buzzelli, Simone Bianco, Raimondo Schettini, Dafeng Zhang, Feiyu Huang, Shizhuo Liu, Xiaobing Wang, Zhezhu Jin, Bingchen Li, Xin Li, Mingxi Li, Ding Liu, Wenbin Zou, Peijie Dong, Tian Ye, Yunchen Zhang, Ming Tan, Xin Niu, Mustafa Ayazoglu, Marcos Conde, Ui-Jin Choi, Zhuang Jia, Tianyu Xu, Yijian Zhang, Mao Ye, Dengyan Luo, Xiaofeng Pan, Liuhan Peng

Figure 1 for AIM 2022 Challenge on Super-Resolution of Compressed Image and Video: Dataset, Methods and Results
Figure 2 for AIM 2022 Challenge on Super-Resolution of Compressed Image and Video: Dataset, Methods and Results
Figure 3 for AIM 2022 Challenge on Super-Resolution of Compressed Image and Video: Dataset, Methods and Results
Figure 4 for AIM 2022 Challenge on Super-Resolution of Compressed Image and Video: Dataset, Methods and Results
Viaarxiv icon

NTIRE 2022 Challenge on Super-Resolution and Quality Enhancement of Compressed Video: Dataset, Methods and Results

Apr 25, 2022
Ren Yang, Radu Timofte, Meisong Zheng, Qunliang Xing, Minglang Qiao, Mai Xu, Lai Jiang, Huaida Liu, Ying Chen, Youcheng Ben, Xiao Zhou, Chen Fu, Pei Cheng, Gang Yu, Junyi Li, Renlong Wu, Zhilu Zhang, Wei Shang, Zhengyao Lv, Yunjin Chen, Mingcai Zhou, Dongwei Ren, Kai Zhang, Wangmeng Zuo, Pavel Ostyakov, Vyal Dmitry, Shakarim Soltanayev, Chervontsev Sergey, Zhussip Magauiya, Xueyi Zou, Youliang Yan, Pablo Navarrete Michelini, Yunhua Lu, Diankai Zhang, Shaoli Liu, Si Gao, Biao Wu, Chengjian Zheng, Xiaofeng Zhang, Kaidi Lu, Ning Wang, Thuong Nguyen Canh, Thong Bach, Qing Wang, Xiaopeng Sun, Haoyu Ma, Shijie Zhao, Junlin Li, Liangbin Xie, Shuwei Shi, Yujiu Yang, Xintao Wang, Jinjin Gu, Chao Dong, Xiaodi Shi, Chunmei Nian, Dong Jiang, Jucai Lin, Zhihuai Xie, Mao Ye, Dengyan Luo, Liuhan Peng, Shengjie Chen, Xin Liu, Qian Wang, Xin Liu, Boyang Liang, Hang Dong, Yuhao Huang, Kai Chen, Xingbei Guo, Yujing Sun, Huilei Wu, Pengxu Wei, Yulin Huang, Junying Chen, Ik Hyun Lee, Sunder Ali Khowaja, Jiseok Yoon

Figure 1 for NTIRE 2022 Challenge on Super-Resolution and Quality Enhancement of Compressed Video: Dataset, Methods and Results
Figure 2 for NTIRE 2022 Challenge on Super-Resolution and Quality Enhancement of Compressed Video: Dataset, Methods and Results
Figure 3 for NTIRE 2022 Challenge on Super-Resolution and Quality Enhancement of Compressed Video: Dataset, Methods and Results
Figure 4 for NTIRE 2022 Challenge on Super-Resolution and Quality Enhancement of Compressed Video: Dataset, Methods and Results
Viaarxiv icon

NTIRE 2021 Challenge on Burst Super-Resolution: Methods and Results

Jun 07, 2021
Goutam Bhat, Martin Danelljan, Radu Timofte, Kazutoshi Akita, Wooyeong Cho, Haoqiang Fan, Lanpeng Jia, Daeshik Kim, Bruno Lecouat, Youwei Li, Shuaicheng Liu, Ziluan Liu, Ziwei Luo, Takahiro Maeda, Julien Mairal, Christian Micheloni, Xuan Mo, Takeru Oba, Pavel Ostyakov, Jean Ponce, Sanghyeok Son, Jian Sun, Norimichi Ukita, Rao Muhammad Umer, Youliang Yan, Lei Yu, Magauiya Zhussip, Xueyi Zou

Figure 1 for NTIRE 2021 Challenge on Burst Super-Resolution: Methods and Results
Figure 2 for NTIRE 2021 Challenge on Burst Super-Resolution: Methods and Results
Figure 3 for NTIRE 2021 Challenge on Burst Super-Resolution: Methods and Results
Figure 4 for NTIRE 2021 Challenge on Burst Super-Resolution: Methods and Results
Viaarxiv icon

NTIRE 2021 Challenge on Quality Enhancement of Compressed Video: Methods and Results

May 02, 2021
Ren Yang, Radu Timofte, Jing Liu, Yi Xu, Xinjian Zhang, Minyi Zhao, Shuigeng Zhou, Kelvin C. K. Chan, Shangchen Zhou, Xiangyu Xu, Chen Change Loy, Xin Li, Fanglong Liu, He Zheng, Lielin Jiang, Qi Zhang, Dongliang He, Fu Li, Qingqing Dang, Yibin Huang, Matteo Maggioni, Zhongqian Fu, Shuai Xiao, Cheng li, Thomas Tanay, Fenglong Song, Wentao Chao, Qiang Guo, Yan Liu, Jiang Li, Xiaochao Qu, Dewang Hou, Jiayu Yang, Lyn Jiang, Di You, Zhenyu Zhang, Chong Mou, Iaroslav Koshelev, Pavel Ostyakov, Andrey Somov, Jia Hao, Xueyi Zou, Shijie Zhao, Xiaopeng Sun, Yiting Liao, Yuanzhi Zhang, Qing Wang, Gen Zhan, Mengxi Guo, Junlin Li, Ming Lu, Zhan Ma, Pablo Navarrete Michelini, Hai Wang, Yiyun Chen, Jingyu Guo, Liliang Zhang, Wenming Yang, Sijung Kim, Syehoon Oh, Yucong Wang, Minjie Cai, Wei Hao, Kangdi Shi, Liangyan Li, Jun Chen, Wei Gao, Wang Liu, Xiaoyu Zhang, Linjie Zhou, Sixin Lin, Ru Wang

Figure 1 for NTIRE 2021 Challenge on Quality Enhancement of Compressed Video: Methods and Results
Figure 2 for NTIRE 2021 Challenge on Quality Enhancement of Compressed Video: Methods and Results
Figure 3 for NTIRE 2021 Challenge on Quality Enhancement of Compressed Video: Methods and Results
Figure 4 for NTIRE 2021 Challenge on Quality Enhancement of Compressed Video: Methods and Results
Viaarxiv icon

Recognition of Russian traffic signs in winter conditions. Solutions of the "Ice Vision" competition winners

Sep 16, 2019
Artem L. Pavlov, Azat Davletshin, Alexey Kharlamov, Maksim S. Koriukin, Artem Vasenin, Pavel Solovev, Pavel Ostyakov, Pavel A. Karpyshev, George V. Ovchinnikov, Ivan V. Oseledets, Dzmitry Tsetserukou

Figure 1 for Recognition of Russian traffic signs in winter conditions. Solutions of the "Ice Vision" competition winners
Figure 2 for Recognition of Russian traffic signs in winter conditions. Solutions of the "Ice Vision" competition winners
Figure 3 for Recognition of Russian traffic signs in winter conditions. Solutions of the "Ice Vision" competition winners
Figure 4 for Recognition of Russian traffic signs in winter conditions. Solutions of the "Ice Vision" competition winners
Viaarxiv icon

Adapting Convolutional Neural Networks for Geographical Domain Shift

Jan 18, 2019
Pavel Ostyakov, Sergey I. Nikolenko

Figure 1 for Adapting Convolutional Neural Networks for Geographical Domain Shift
Figure 2 for Adapting Convolutional Neural Networks for Geographical Domain Shift
Figure 3 for Adapting Convolutional Neural Networks for Geographical Domain Shift
Figure 4 for Adapting Convolutional Neural Networks for Geographical Domain Shift
Viaarxiv icon

Learning State Representations in Complex Systems with Multimodal Data

Nov 30, 2018
Pavel Solovev, Vladimir Aliev, Pavel Ostyakov, Gleb Sterkin, Elizaveta Logacheva, Stepan Troeshestov, Roman Suvorov, Anton Mashikhin, Oleg Khomenko, Sergey I. Nikolenko

Figure 1 for Learning State Representations in Complex Systems with Multimodal Data
Figure 2 for Learning State Representations in Complex Systems with Multimodal Data
Figure 3 for Learning State Representations in Complex Systems with Multimodal Data
Figure 4 for Learning State Representations in Complex Systems with Multimodal Data
Viaarxiv icon