Artificial intelligence (AI) technology has become increasingly prevalent and transforms our everyday life. One important application of AI technology is the development of autonomous vehicles (AV). However, the reliability of an AV needs to be carefully demonstrated via an assurance test so that the product can be used with confidence in the field. To plan for an assurance test, one needs to determine how many AVs need to be tested for how many miles and the standard for passing the test. Existing research has made great efforts in developing reliability demonstration tests in the other fields of applications for product development and assessment. However, statistical methods have not been utilized in AV test planning. This paper aims to fill in this gap by developing statistical methods for planning AV reliability assurance tests based on recurrent events data. We explore the relationship between multiple criteria of interest in the context of planning AV reliability assurance tests. Specifically, we develop two test planning strategies based on homogeneous and non-homogeneous Poisson processes while balancing multiple objectives with the Pareto front approach. We also offer recommendations for practical use. The disengagement events data from the California Department of Motor Vehicles AV testing program is used to illustrate the proposed assurance test planning methods.
Deep biasing for the Transducer can improve the recognition performance of rare words or contextual entities, which is essential in practical applications, especially for streaming Automatic Speech Recognition (ASR). However, deep biasing with large-scale rare words remains challenging, as the performance drops significantly when more distractors exist and there are words with similar grapheme sequences in the bias list. In this paper, we combine the phoneme and textual information of rare words in Transducers to distinguish words with similar pronunciation or spelling. Moreover, the introduction of training with text-only data containing more rare words benefits large-scale deep biasing. The experiments on the LibriSpeech corpus demonstrate that the proposed method achieves state-of-the-art performance on rare word error rate for different scales and levels of bias lists.
As deep learning models continue to increase in size, the memory requirements for training have surged. While high-level techniques like offloading, recomputation, and compression can alleviate memory pressure, they also introduce overheads. However, a memory-efficient execution plan that includes a reasonable operator execution order and tensor memory layout can significantly increase the models' memory efficiency and reduce overheads from high-level techniques. In this paper, we propose ROAM which operates on computation graph level to derive memory-efficient execution plan with optimized operator order and tensor memory layout for models. We first propose sophisticated theories that carefully consider model structure and training memory load to support optimization for large complex graphs that have not been well supported in the past. An efficient tree-based algorithm is further proposed to search task divisions automatically, along with delivering high performance and effectiveness to solve the problem. Experiments show that ROAM achieves a substantial memory reduction of 35.7%, 13.3%, and 27.2% compared to Pytorch and two state-of-the-art methods and offers a remarkable 53.7x speedup. The evaluation conducted on the expansive GPT2-XL further validates ROAM's scalability.
Neural operators have been applied in various scientific fields, such as solving parametric partial differential equations, dynamical systems with control, and inverse problems. However, challenges arise when dealing with input functions that exhibit heterogeneous properties, requiring multiple sensors to handle functions with minimal regularity. To address this issue, discretization-invariant neural operators have been used, allowing the sampling of diverse input functions with different sensor locations. However, existing frameworks still require an equal number of sensors for all functions. In our study, we propose a novel distributed approach to further relax the discretization requirements and solve the heterogeneous dataset challenges. Our method involves partitioning the input function space and processing individual input functions using independent and separate neural networks. A centralized neural network is used to handle shared information across all output functions. This distributed methodology reduces the number of gradient descent back-propagation steps, improving efficiency while maintaining accuracy. We demonstrate that the corresponding neural network is a universal approximator of continuous nonlinear operators and present four numerical examples to validate its performance.
Hearing is arguably an essential ability of artificial intelligence (AI) agents in the physical world, which refers to the perception and understanding of general auditory information consisting of at least three types of sounds: speech, audio events, and music. In this paper, we propose SALMONN, a speech audio language music open neural network, built by integrating a pre-trained text-based large language model (LLM) with speech and audio encoders into a single multimodal model. SALMONN enables the LLM to directly process and understand general audio inputs and achieve competitive performances on a number of speech and audio tasks used in training, such as automatic speech recognition and translation, auditory-information-based question answering, emotion recognition, speaker verification, and music and audio captioning \textit{etc.} SALMONN also has a diverse set of emergent abilities unseen in the training, which includes but is not limited to speech translation to untrained languages, speech-based slot filling, spoken-query-based question answering, audio-based storytelling, and speech audio co-reasoning \textit{etc}. The presence of the cross-modal emergent abilities is studied, and a novel few-shot activation tuning approach is proposed to activate such abilities of SALMONN. To our knowledge, SALMONN is the first model of its type and can be regarded as a step towards AI with generic hearing abilities. An interactive demo of SALMONN is available at \texttt{\url{https://github.com/bytedance/SALMONN}}, and the training code and model checkpoints will be released upon acceptance.
Audio-visual large language models (LLM) have drawn significant attention, yet the fine-grained combination of both input streams is rather under-explored, which is challenging but necessary for LLMs to understand general video inputs. To this end, a fine-grained audio-visual joint representation (FAVOR) learning framework for multimodal LLMs is proposed in this paper, which extends a text-based LLM to simultaneously perceive speech and audio events in the audio input stream and images or videos in the visual input stream, at the frame level. To fuse the audio and visual feature streams into joint representations and to align the joint space with the LLM input embedding space, we propose a causal Q-Former structure with a causal attention module to enhance the capture of causal relations of the audio-visual frames across time. An audio-visual evaluation benchmark (AVEB) is also proposed which comprises six representative single-modal tasks with five cross-modal tasks reflecting audio-visual co-reasoning abilities. While achieving competitive single-modal performance on audio, speech and image tasks in AVEB, FAVOR achieved over 20% accuracy improvements on the video question-answering task when fine-grained information or temporal causal reasoning is required. FAVOR, in addition, demonstrated remarkable video comprehension and reasoning abilities on tasks that are unprecedented by other multimodal LLMs. An interactive demo of FAVOR is available at https://github.com/BriansIDP/AudioVisualLLM.git, and the training code and model checkpoints will be released soon.
The impressive capability and versatility of large language models (LLMs) have aroused increasing attention in automatic speech recognition (ASR), with several pioneering studies attempting to build integrated ASR models by connecting a speech encoder with an LLM. This paper presents a comparative study of three commonly used structures as connectors, including fully connected layers, multi-head cross-attention, and Q-Former. Speech encoders from the Whisper model series as well as LLMs from the Vicuna model series with different model sizes were studied. Experiments were performed on the commonly used LibriSpeech, Common Voice, and GigaSpeech datasets, where the LLMs with Q-Formers demonstrated consistent and considerable word error rate (WER) reductions over LLMs with other connector structures. Q-Former-based LLMs can generalise well to out-of-domain datasets, where 12% relative WER reductions over the Whisper baseline ASR model were achieved on the Eval2000 test set without using any in-domain training data from Switchboard. Moreover, a novel segment-level Q-Former is proposed to enable LLMs to recognise speech segments with a duration exceeding the limitation of the encoders, which results in 17% relative WER reductions over other connector structures on 90-second-long speech data.
There is an increasing interest in developing LLMs for medical diagnosis to improve diagnosis efficiency. Despite their alluring technological potential, there is no unified and comprehensive evaluation criterion, leading to the inability to evaluate the quality and potential risks of medical LLMs, further hindering the application of LLMs in medical treatment scenarios. Besides, current evaluations heavily rely on labor-intensive interactions with LLMs to obtain diagnostic dialogues and human evaluation on the quality of diagnosis dialogue. To tackle the lack of unified and comprehensive evaluation criterion, we first initially establish an evaluation criterion, termed LLM-specific Mini-CEX to assess the diagnostic capabilities of LLMs effectively, based on original Mini-CEX. To address the labor-intensive interaction problem, we develop a patient simulator to engage in automatic conversations with LLMs, and utilize ChatGPT for evaluating diagnosis dialogues automatically. Experimental results show that the LLM-specific Mini-CEX is adequate and necessary to evaluate medical diagnosis dialogue. Besides, ChatGPT can replace manual evaluation on the metrics of humanistic qualities and provides reproducible and automated comparisons between different LLMs.
Physics-informed neural networks (PINNs) are known to suffer from optimization difficulty. In this work, we reveal the connection between the optimization difficulty of PINNs and activation functions. Specifically, we show that PINNs exhibit high sensitivity to activation functions when solving PDEs with distinct properties. Existing works usually choose activation functions by inefficient trial-and-error. To avoid the inefficient manual selection and to alleviate the optimization difficulty of PINNs, we introduce adaptive activation functions to search for the optimal function when solving different problems. We compare different adaptive activation functions and discuss their limitations in the context of PINNs. Furthermore, we propose to tailor the idea of learning combinations of candidate activation functions to the PINNs optimization, which has a higher requirement for the smoothness and diversity on learned functions. This is achieved by removing activation functions which cannot provide higher-order derivatives from the candidate set and incorporating elementary functions with different properties according to our prior knowledge about the PDE at hand. We further enhance the search space with adaptive slopes. The proposed adaptive activation function can be used to solve different PDE systems in an interpretable way. Its effectiveness is demonstrated on a series of benchmarks. Code is available at https://github.com/LeapLabTHU/AdaAFforPINNs.
While significant progress has been made on Physics-Informed Neural Networks (PINNs), a comprehensive comparison of these methods across a wide range of Partial Differential Equations (PDEs) is still lacking. This study introduces PINNacle, a benchmarking tool designed to fill this gap. PINNacle provides a diverse dataset, comprising over 20 distinct PDEs from various domains including heat conduction, fluid dynamics, biology, and electromagnetics. These PDEs encapsulate key challenges inherent to real-world problems, such as complex geometry, multi-scale phenomena, nonlinearity, and high dimensionality. PINNacle also offers a user-friendly toolbox, incorporating about 10 state-of-the-art PINN methods for systematic evaluation and comparison. We have conducted extensive experiments with these methods, offering insights into their strengths and weaknesses. In addition to providing a standardized means of assessing performance, PINNacle also offers an in-depth analysis to guide future research, particularly in areas such as domain decomposition methods and loss reweighting for handling multi-scale problems and complex geometry. While PINNacle does not guarantee success in all real-world scenarios, it represents a significant contribution to the field by offering a robust, diverse, and comprehensive benchmark suite that will undoubtedly foster further research and development in PINNs.