School of Computer Science, Shenyang Aerospace University
Abstract:The NK hybrid genetic algorithm for clustering is proposed in this paper. In order to evaluate the solutions, the hybrid algorithm uses the NK clustering validation criterion 2 (NKCV2). NKCV2 uses information about the disposition of $N$ small groups of objects. Each group is composed of $K+1$ objects of the dataset. Experimental results show that density-based regions can be identified by using NKCV2 with fixed small $K$. In NKCV2, the relationship between decision variables is known, which in turn allows us to apply gray box optimization. Mutation operators, a partition crossover, and a local search strategy are proposed, all using information about the relationship between decision variables. In partition crossover, the evaluation function is decomposed into $q$ independent components; partition crossover then deterministically returns the best among $2^q$ possible offspring with computational complexity $O(N)$. The NK hybrid genetic algorithm allows the detection of clusters with arbitrary shapes and the automatic estimation of the number of clusters. In the experiments, the NK hybrid genetic algorithm produced very good results when compared to another genetic algorithm approach and to state-of-art clustering algorithms.
Abstract:The widespread consumer-grade 3D printers and learning resources online enable novices to self-train in remote settings. While troubleshooting plays an essential part of 3D printing, the process remains challenging for many remote novices even with the help of well-developed online sources, such as online troubleshooting archives and online community help. We conducted a formative study with 76 active 3D printing users to learn how remote novices leverage online resources in troubleshooting and their challenges. We found that remote novices cannot fully utilize online resources. For example, the online archives statically provide general information, making it hard to search and relate their unique cases with existing descriptions. Online communities can potentially ease their struggles by providing more targeted suggestions, but a helper who can provide custom help is rather scarce, making it hard to obtain timely assistance. We propose 3DPFIX, an interactive 3D troubleshooting system powered by the pipeline to facilitate Human-AI Collaboration, designed to improve novices' 3D printing experiences and thus help them easily accumulate their domain knowledge. We built 3DPFIX that supports automated diagnosis and solution-seeking. 3DPFIX was built upon shared dialogues about failure cases from Q&A discourses accumulated in online communities. We leverage social annotations (i.e., comments) to build an annotated failure image dataset for AI classifiers and extract a solution pool. Our summative study revealed that using 3DPFIX helped participants spend significantly less effort in diagnosing failures and finding a more accurate solution than relying on their common practice. We also found that 3DPFIX users learn about 3D printing domain-specific knowledge. We discuss the implications of leveraging community-driven data in developing future Human-AI Collaboration designs.
Abstract:Learning interpretable representations of data generative latent factors is an important topic for the development of artificial intelligence. With the rise of the large multimodal model, it can align images with text to generate answers. In this work, we propose a framework to comprehensively explain each latent factor in the generative models using a large multimodal model. We further measure the uncertainty of our generated explanations, quantitatively evaluate the performance of explanation generation among multiple large multimodal models, and qualitatively visualize the variations of each latent factor to learn the disentanglement effects of different generative models on explanations. Finally, we discuss the explanatory capabilities and limitations of state-of-the-art large multimodal models.
Abstract:Playing Large Vision Language Models (LVLMs) in 2023 is trendy among the AI community. However, the relatively large number of parameters (more than 7B) of popular LVLMs makes it difficult to train and deploy on consumer GPUs, discouraging many researchers with limited resources. Imagine how cool it would be to experience all the features of current LVLMs on an old GTX1080ti (our only game card). Accordingly, we present Vary-toy in this report, a small-size Vary along with Qwen-1.8B as the base ``large'' language model. In Vary-toy, we introduce an improved vision vocabulary, allowing the model to not only possess all features of Vary but also gather more generality. Specifically, we replace negative samples of natural images with positive sample data driven by object detection in the procedure of generating vision vocabulary, more sufficiently utilizing the capacity of the vocabulary network and enabling it to efficiently encode visual information corresponding to natural objects. For experiments, Vary-toy can achieve 65.6% ANLS on DocVQA, 59.1% accuracy on ChartQA, 88.1% accuracy on RefCOCO, and 29% on MMVet. The code will be publicly available on the homepage.
Abstract:The intricate relationship between genetic variation and human diseases has been a focal point of medical research, evidenced by the identification of risk genes regarding specific diseases. The advent of advanced genome sequencing techniques has significantly improved the efficiency and cost-effectiveness of detecting these genetic markers, playing a crucial role in disease diagnosis and forming the basis for clinical decision-making and early risk assessment. To overcome the limitations of existing databases that record disease-gene associations from existing literature, which often lack real-time updates, we propose a novel framework employing Large Language Models (LLMs) for the discovery of diseases associated with specific genes. This framework aims to automate the labor-intensive process of sifting through medical literature for evidence linking genetic variations to diseases, thereby enhancing the efficiency of disease identification. Our approach involves using LLMs to conduct literature searches, summarize relevant findings, and pinpoint diseases related to specific genes. This paper details the development and application of our LLM-powered framework, demonstrating its potential in streamlining the complex process of literature retrieval and summarization to identify diseases associated with specific genetic variations.
Abstract:The burgeoning field of Large Language Models (LLMs), exemplified by sophisticated models like OpenAI's ChatGPT, represents a significant advancement in artificial intelligence. These models, however, bring forth substantial challenges in the high consumption of computational, memory, energy, and financial resources, especially in environments with limited resource capabilities. This survey aims to systematically address these challenges by reviewing a broad spectrum of techniques designed to enhance the resource efficiency of LLMs. We categorize methods based on their optimization focus: computational, memory, energy, financial, and network resources and their applicability across various stages of an LLM's lifecycle, including architecture design, pretraining, finetuning, and system design. Additionally, the survey introduces a nuanced categorization of resource efficiency techniques by their specific resource types, which uncovers the intricate relationships and mappings between various resources and corresponding optimization techniques. A standardized set of evaluation metrics and datasets is also presented to facilitate consistent and fair comparisons across different models and techniques. By offering a comprehensive overview of the current sota and identifying open research avenues, this survey serves as a foundational reference for researchers and practitioners, aiding them in developing more sustainable and efficient LLMs in a rapidly evolving landscape.
Abstract:Transformer has taken the natural language processing (NLP) field by storm since birth, owing to its superior ability to model complex dependencies in sequences. Despite the great success of pretrained language models (PLMs) based on Transformer across almost all NLP tasks, they all suffer from a preset length limit and thus can hardly extend this success to longer sequences beyond seen data, namely the length extrapolation problem. Length extrapolation has aroused great interest among researchers, as it is the core feature of human language capacity. To enhance length extrapolation of Transformers, a plethora of methods have been proposed, mostly focusing on extrapolatable position encodings. In this article, we provide an organized and systematical review of these research efforts in a unified notation from a position encoding perspective, aiming to enable the reader to gain a deep understanding of existing methods and provide stimuli for future research.
Abstract:Time series domain adaptation stands as a pivotal and intricate challenge with diverse applications, including but not limited to human activity recognition, sleep stage classification, and machine fault diagnosis. Despite the numerous domain adaptation techniques proposed to tackle this complex problem, their primary focus has been on the common representations of time series data. This concentration might inadvertently lead to the oversight of valuable domain-specific information originating from different source domains. To bridge this gap, we introduce POND, a novel prompt-based deep learning model designed explicitly for multi-source time series domain adaptation. POND is tailored to address significant challenges, notably: 1) The unavailability of a quantitative relationship between meta-data information and time series distributions, and 2) The dearth of exploration into extracting domain-specific meta-data information. In this paper, we present an instance-level prompt generator and a fidelity loss mechanism to facilitate the faithful learning of meta-data information. Additionally, we propose a domain discrimination technique to discern domain-specific meta-data information from multiple source domains. Our approach involves a simple yet effective meta-learning algorithm to optimize the objective efficiently. Furthermore, we augment the model's performance by incorporating the Mixture of Expert (MoE) technique. The efficacy and robustness of our proposed POND model are extensively validated through experiments across 50 scenarios encompassing five datasets, which demonstrates that our proposed POND model outperforms the state-of-the-art methods by up to $66\%$ on the F1-score.
Abstract:Spatial networks are networks whose graph topology is constrained by their embedded spatial space. Understanding the coupled spatial-graph properties is crucial for extracting powerful representations from spatial networks. Therefore, merely combining individual spatial and network representations cannot reveal the underlying interaction mechanism of spatial networks. Besides, existing spatial network representation learning methods can only consider networks embedded in Euclidean space, and can not well exploit the rich geometric information carried by irregular and non-uniform non-Euclidean space. In order to address this issue, in this paper we propose a novel generic framework to learn the representation of spatial networks that are embedded in non-Euclidean manifold space. Specifically, a novel message-passing-based neural network is proposed to combine graph topology and spatial geometry, where spatial geometry is extracted as messages on the edges. We theoretically guarantee that the learned representations are provably invariant to important symmetries such as rotation or translation, and simultaneously maintain sufficient ability in distinguishing different geometric structures. The strength of our proposed method is demonstrated through extensive experiments on both synthetic and real-world datasets.
Abstract:Modern Large Vision-Language Models (LVLMs) enjoy the same vision vocabulary -- CLIP, which can cover most common vision tasks. However, for some special vision task that needs dense and fine-grained vision perception, e.g., document-level OCR or chart understanding, especially in non-English scenarios, the CLIP-style vocabulary may encounter low efficiency in tokenizing the vision knowledge and even suffer out-of-vocabulary problem. Accordingly, we propose Vary, an efficient and effective method to scale up the vision vocabulary of LVLMs. The procedures of Vary are naturally divided into two folds: the generation and integration of a new vision vocabulary. In the first phase, we devise a vocabulary network along with a tiny decoder-only transformer to produce the desired vocabulary via autoregression. In the next, we scale up the vanilla vision vocabulary by merging the new one with the original one (CLIP), enabling the LVLMs can quickly garner new features. Compared to the popular BLIP-2, MiniGPT4, and LLaVA, Vary can maintain its vanilla capabilities while enjoying more excellent fine-grained perception and understanding ability. Specifically, Vary is competent in new document parsing features (OCR or markdown conversion) while achieving 78.2% ANLS in DocVQA and 36.2% in MMVet. Our code will be publicly available on the homepage.