Carnegie Mellon University
Abstract:In the rapidly evolving field of image generation, achieving precise control over generated content and maintaining semantic consistency remain significant limitations, particularly concerning grounding techniques and the necessity for model fine-tuning. To address these challenges, we propose BayesGenie, an off-the-shelf approach that integrates Large Language Models (LLMs) with Bayesian Optimization to facilitate precise and user-friendly image editing. Our method enables users to modify images through natural language descriptions without manual area marking, while preserving the original image's semantic integrity. Unlike existing techniques that require extensive pre-training or fine-tuning, our approach demonstrates remarkable adaptability across various LLMs through its model-agnostic design. BayesGenie employs an adapted Bayesian optimization strategy to automatically refine the inference process parameters, achieving high-precision image editing with minimal user intervention. Through extensive experiments across diverse scenarios, we demonstrate that our framework significantly outperforms existing methods in both editing accuracy and semantic preservation, as validated using different LLMs including Claude3 and GPT-4.
Abstract:How can we verify whether copyrighted content was used to train a large vision-language model (VLM) without direct access to its training data? Motivated by the hypothesis that a VLM is able to recognize images from its training corpus, we propose DIS-CO, a novel approach to infer the inclusion of copyrighted content during the model's development. By repeatedly querying a VLM with specific frames from targeted copyrighted material, DIS-CO extracts the content's identity through free-form text completions. To assess its effectiveness, we introduce MovieTection, a benchmark comprising 14,000 frames paired with detailed captions, drawn from films released both before and after a model's training cutoff. Our results show that DIS-CO significantly improves detection performance, nearly doubling the average AUC of the best prior method on models with logits available. Our findings also highlight a broader concern: all tested models appear to have been exposed to some extent to copyrighted content. Our code and data are available at https://github.com/avduarte333/DIS-CO
Abstract:Social recommendation, a branch of algorithms that utilizes social connection information to construct recommender systems, has demonstrated its effectiveness in enhancing recommendation accuracy. However, apart from accuracy, the diversity of recommendations also plays a critical role in user engagement. Unfortunately, the impact of social recommendation models on recommendation diversity remains largely unexplored. In this study, we investigate the dual performance of existing social recommendation algorithms in terms of accuracy and diversity. Our empirical findings highlight a concerning trend: social recommendation models tend to decrease diversity, despite their accuracy improvements. To address this issue, we propose a novel approach called Diversified Social Recommendation (DivSR), which leverages relational knowledge distillation techniques to transfer high-diversity structured knowledge from non-social recommendation models to social recommendation models. DivSR is designed as a simple, model-agnostic framework that integrates seamlessly with existing social recommendation architectures. Experimental results on three benchmark datasets demonstrate that DivSR significantly increases diversity without markedly compromising accuracy across various social recommendation backbones, achieving a better accuracy-diversity trade-off. Our code and data are publicly available at: https://github.com/ll0ruc/DivSR
Abstract:Previous multilingual benchmarks focus primarily on simple understanding tasks, but for large language models(LLMs), we emphasize proficiency in instruction following, reasoning, long context understanding, code generation, and so on. However, measuring these advanced capabilities across languages is underexplored. To address the disparity, we introduce BenchMAX, a multi-way multilingual evaluation benchmark that allows for fair comparisons of these important abilities across languages. To maintain high quality, three distinct native-speaking annotators independently annotate each sample within all tasks after the data was machine-translated from English into 16 other languages. Additionally, we present a novel translation challenge stemming from dataset construction. Extensive experiments on BenchMAX reveal varying effectiveness of core capabilities across languages, highlighting performance gaps that cannot be bridged by simply scaling up model size. BenchMAX serves as a comprehensive multilingual evaluation platform, providing a promising test bed to promote the development of multilingual language models. The dataset and code are publicly accessible.
Abstract:Long Context Language Models have drawn great attention in the past few years. There has been work discussing the impact of long context on Language Model performance: some find that long irrelevant context could harm performance, while some experimentally summarize loss reduction by relevant long context as Scaling Laws. This calls for a more thorough understanding on how long context impact Language Modeling. In this work, we (1) propose a clean and effective theoretical framework on explaining the impact of context length to Language Modeling, from an Intrinsic Space perspective; and (2) conduct experiments on natural language and synthetic data, validating our proposed theoretical assumptions and deductions. Our theoretical framework can provide practical insights such as establishing that training dataset size dictates an optimal context length and bounds context length scaling for certain case. We hope our work may inspire new long context Language Models, as well as future work studying Physics for Language Models. Code for our experiments is available at this url: https://github.com/JingzheShi/NLPCtlScalingAndBounds.
Abstract:Diffusion-based algorithms have emerged as promising techniques for weight generation, particularly in scenarios like multi-task learning that require frequent weight updates. However, existing solutions suffer from limited cross-task transferability. In addition, they only utilize optimal weights as training samples, ignoring the value of other weights in the optimization process. To address these issues, we propose Lt-Di, which integrates the diffusion algorithm with meta-learning to generate weights for unseen tasks. Furthermore, we extend the vanilla diffusion algorithm into a trajectory diffusion algorithm to utilize other weights along the optimization trajectory. Trajectory diffusion decomposes the entire diffusion chain into multiple shorter ones, improving training and inference efficiency. We analyze the convergence properties of the weight generation paradigm and improve convergence efficiency without additional time overhead. Our experiments demonstrate Lt-Di's higher accuracy while reducing computational overhead across various tasks, including zero-shot and few-shot learning, multi-domain generalization, and large-scale language model fine-tuning.Our code is released at https://github.com/tuantuange/Lt-Di.
Abstract:Low-rank Adaptation (LoRA) has demonstrated remarkable capabilities for task specific fine-tuning. However, in scenarios that involve multiple tasks, training a separate LoRA model for each one results in considerable inefficiency in terms of storage and inference. Moreover, existing parameter generation methods fail to capture the correlations among these tasks, making multi-task LoRA parameter generation challenging. To address these limitations, we propose In-Context Meta LoRA (ICM-LoRA), a novel approach that efficiently achieves task-specific customization of large language models (LLMs). Specifically, we use training data from all tasks to train a tailored generator, Conditional Variational Autoencoder (CVAE). CVAE takes task descriptions as inputs and produces task-aware LoRA weights as outputs. These LoRA weights are then merged with LLMs to create task-specialized models without the need for additional fine-tuning. Furthermore, we utilize in-context meta-learning for knowledge enhancement and task mapping, to capture the relationship between tasks and parameter distributions. As a result, our method achieves more accurate LoRA parameter generation for diverse tasks using CVAE. ICM-LoRA enables more accurate LoRA parameter reconstruction than current parameter reconstruction methods and is useful for implementing task-specific enhancements of LoRA parameters. At the same time, our method occupies 283MB, only 1\% storage compared with the original LoRA.
Abstract:Diffusion models are a powerful framework for tackling ill-posed problems, with recent advancements extending their use to point cloud upsampling. Despite their potential, existing diffusion models struggle with inefficiencies as they map Gaussian noise to real point clouds, overlooking the geometric information inherent in sparse point clouds. To address these inefficiencies, we propose PUFM, a flow matching approach to directly map sparse point clouds to their high-fidelity dense counterparts. Our method first employs midpoint interpolation to sparse point clouds, resolving the density mismatch between sparse and dense point clouds. Since point clouds are unordered representations, we introduce a pre-alignment method based on Earth Mover's Distance (EMD) optimization to ensure coherent interpolation between sparse and dense point clouds, which enables a more stable learning path in flow matching. Experiments on synthetic datasets demonstrate that our method delivers superior upsampling quality but with fewer sampling steps. Further experiments on ScanNet and KITTI also show that our approach generalizes well on RGB-D point clouds and LiDAR point clouds, making it more practical for real-world applications.
Abstract:A common characteristic in integer linear programs (ILPs) is symmetry, allowing variables to be permuted without altering the underlying problem structure. Recently, GNNs have emerged as a promising approach for solving ILPs. However, a significant challenge arises when applying GNNs to ILPs with symmetry: classic GNN architectures struggle to differentiate between symmetric variables, which limits their predictive accuracy. In this work, we investigate the properties of permutation equivariance and invariance in GNNs, particularly in relation to the inherent symmetry of ILP formulations. We reveal that the interaction between these two factors contributes to the difficulty of distinguishing between symmetric variables. To address this challenge, we explore the potential of feature augmentation and propose several guiding principles for constructing augmented features. Building on these principles, we develop an orbit-based augmentation scheme that first groups symmetric variables and then samples augmented features for each group from a discrete uniform distribution. Empirical results demonstrate that our proposed approach significantly enhances both training efficiency and predictive performance.
Abstract:The relationship between language and thought remains an unresolved philosophical issue. Existing viewpoints can be broadly categorized into two schools: one asserting their independence, and another arguing that language constrains thought. In the context of large language models, this debate raises a crucial question: Does a language model's grasp of semantic meaning depend on thought processes? To explore this issue, we investigate whether reasoning techniques can facilitate semantic understanding. Specifically, we conceptualize thought as reasoning, employ chain-of-thought prompting as a reasoning technique, and examine its impact on sentiment analysis tasks. The experiments show that chain-of-thought has a minimal impact on sentiment analysis tasks. Both the standard and chain-of-thought prompts focus on aspect terms rather than sentiment in the generated content. Furthermore, counterfactual experiments reveal that the model's handling of sentiment tasks primarily depends on information from demonstrations. The experimental results support the first viewpoint.