Abstract:The effectiveness of large language models (LLMs) is often hindered by duplicated data in their extensive pre-training datasets. Current approaches primarily focus on detecting and removing duplicates, which risks the loss of valuable information and neglects the varying degrees of duplication. To address this, we propose a soft deduplication method that maintains dataset integrity while selectively reducing the sampling weight of data with high commonness. Central to our approach is the concept of "data commonness", a metric we introduce to quantify the degree of duplication by measuring the occurrence probabilities of samples using an n-gram model. Empirical analysis shows that this method significantly improves training efficiency, achieving comparable perplexity scores with at least a 26% reduction in required training steps. Additionally, it enhances average few-shot downstream accuracy by 1.77% when trained for an equivalent duration. Importantly, this approach consistently improves performance, even on rigorously deduplicated datasets, indicating its potential to complement existing methods and become a standard pre-training process for LLMs.
Abstract:Graphical User Interfaces (GUIs) are central to our interaction with digital devices. Recently, growing efforts have been made to build models for various GUI understanding tasks. However, these efforts largely overlook an important GUI-referring task: screen reading based on user-indicated points, which we name the Screen Point-and-Read (SPR) task. This task is predominantly handled by rigid accessible screen reading tools, in great need of new models driven by advancements in Multimodal Large Language Models (MLLMs). In this paper, we propose a Tree-of-Lens (ToL) agent, utilizing a novel ToL grounding mechanism, to address the SPR task. Based on the input point coordinate and the corresponding GUI screenshot, our ToL agent constructs a Hierarchical Layout Tree. Based on the tree, our ToL agent not only comprehends the content of the indicated area but also articulates the layout and spatial relationships between elements. Such layout information is crucial for accurately interpreting information on the screen, distinguishing our ToL agent from other screen reading tools. We also thoroughly evaluate the ToL agent against other baselines on a newly proposed SPR benchmark, which includes GUIs from mobile, web, and operating systems. Last but not least, we test the ToL agent on mobile GUI navigation tasks, demonstrating its utility in identifying incorrect actions along the path of agent execution trajectories. Code and data: screen-point-and-read.github.io
Abstract:Many people use search engines to find online guidance to solve computer or mobile device problems. Users frequently encounter challenges in identifying effective solutions from search results, often wasting time trying ineffective solutions that seem relevant yet fail to solve the real problems. This paper introduces a novel approach to improving the accuracy and relevance of online technical support search results through automated search results verification and reranking. Taking "How-to" queries specific to on-device execution as a starting point, we first developed a solution that allows an AI agent to interpret and execute step-by-step instructions in the search results in a controlled Android environment. We further integrated the agent's findings into a reranking mechanism that orders search results based on the success indicators of the tested solutions. The paper details the architecture of our solution and a comprehensive evaluation of the system through a series of tests across various application domains. The results demonstrate a significant improvement in the quality and reliability of the top-ranked results. Our findings suggest a paradigm shift in how search engine ranking for online technical support help can be optimized, offering a scalable and automated solution to the pervasive challenge of finding effective and reliable online help.
Abstract:In the rapidly evolving landscape of artificial intelligence (AI), the collaboration between human intelligence and AI systems, known as Human-AI (HAI) Teaming, has emerged as a cornerstone for advancing problem-solving and decision-making processes. The advent of Large Pre-trained Models (LPtM) has significantly transformed this landscape, offering unprecedented capabilities by leveraging vast amounts of data to understand and predict complex patterns. This paper surveys the pivotal integration of LPtMs with HAI, emphasizing how these models enhance collaborative intelligence beyond traditional approaches. It examines the synergistic potential of LPtMs in augmenting human capabilities, discussing this collaboration for AI model improvements, effective teaming, ethical considerations, and their broad applied implications in various sectors. Through this exploration, the study sheds light on the transformative impact of LPtM-enhanced HAI Teaming, providing insights for future research, policy development, and strategic implementations aimed at harnessing the full potential of this collaboration for research and societal benefit.
Abstract:We develop an advanced approach for extending Gaussian Differential Privacy (GDP) to general Riemannian manifolds. The concept of GDP stands out as a prominent privacy definition that strongly warrants extension to manifold settings, due to its central limit properties. By harnessing the power of the renowned Bishop-Gromov theorem in geometric analysis, we propose a Riemannian Gaussian distribution that integrates the Riemannian distance, allowing us to achieve GDP in Riemannian manifolds with bounded Ricci curvature. To the best of our knowledge, this work marks the first instance of extending the GDP framework to accommodate general Riemannian manifolds, encompassing curved spaces, and circumventing the reliance on tangent space summaries. We provide a simple algorithm to evaluate the privacy budget $\mu$ on any one-dimensional manifold and introduce a versatile Markov Chain Monte Carlo (MCMC)-based algorithm to calculate $\mu$ on any Riemannian manifold with constant curvature. Through simulations on one of the most prevalent manifolds in statistics, the unit sphere $S^d$, we demonstrate the superior utility of our Riemannian Gaussian mechanism in comparison to the previously proposed Riemannian Laplace mechanism for implementing GDP.
Abstract:Lensless imagers based on diffusers or encoding masks enable high-dimensional imaging from a single shot measurement and have been applied in various applications. However, to further extract image information such as edge detection, conventional post-processing filtering operations are needed after the reconstruction of the original object images in the diffuser imaging systems. Here, we present the concept of a temporal compressive edge detection method based on a lensless diffuser camera, which can directly recover a time sequence of edge images of a moving object from a single-shot measurement, without further post-processing steps. Our approach provides higher image quality during edge detection, compared with the conventional post-processing method. We demonstrate the effectiveness of this approach by both numerical simulation and experiments. The proof-of-concept approach can be further developed with other image post-process operations or versatile computer vision assignments toward task-oriented intelligent lensless imaging systems.
Abstract:Vision Foundation Models (VFMs) such as the Segment Anything Model (SAM) allow zero-shot or interactive segmentation of visual contents, thus they are quickly applied in a variety of visual scenes. However, their direct use in many Remote Sensing (RS) applications is often unsatisfactory due to the special imaging characteristics of RS images. In this work, we aim to utilize the strong visual recognition capabilities of VFMs to improve the change detection of high-resolution Remote Sensing Images (RSIs). We employ the visual encoder of FastSAM, an efficient variant of the SAM, to extract visual representations in RS scenes. To adapt FastSAM to focus on some specific ground objects in the RS scenes, we propose a convolutional adaptor to aggregate the task-oriented change information. Moreover, to utilize the semantic representations that are inherent to SAM features, we introduce a task-agnostic semantic learning branch to model the semantic latent in bi-temporal RSIs. The resulting method, SAMCD, obtains superior accuracy compared to the SOTA methods and exhibits a sample-efficient learning ability that is comparable to semi-supervised CD methods. To the best of our knowledge, this is the first work that adapts VFMs for the CD of HR RSIs.
Abstract:Semantic Change Detection (SCD) refers to the task of simultaneously extracting the changed areas and the semantic categories (before and after the changes) in Remote Sensing Images (RSIs). This is more meaningful than Binary Change Detection (BCD) since it enables detailed change analysis in the observed areas. Previous works established triple-branch Convolutional Neural Network (CNN) architectures as the paradigm for SCD. However, it remains challenging to exploit semantic information with a limited amount of change samples. In this work, we investigate to jointly consider the spatio-temporal dependencies to improve the accuracy of SCD. First, we propose a Semantic Change Transformer (SCanFormer) to explicitly model the 'from-to' semantic transitions between the bi-temporal RSIs. Then, we introduce a semantic learning scheme to leverage the spatio-temporal constraints, which are coherent to the SCD task, to guide the learning of semantic changes. The resulting network (SCanNet) significantly outperforms the baseline method in terms of both detection of critical semantic changes and semantic consistency in the obtained bi-temporal results. It achieves the SOTA accuracy on two benchmark datasets for the SCD.
Abstract:Video processing and analysis have become an urgent task since a huge amount of videos (e.g., Youtube, Hulu) are uploaded online every day. The extraction of representative key frames from videos is very important in video processing and analysis since it greatly reduces computing resources and time. Although great progress has been made recently, large-scale video classification remains an open problem, as the existing methods have not well balanced the performance and efficiency simultaneously. To tackle this problem, this work presents an unsupervised method to retrieve the key frames, which combines Convolutional Neural Network (CNN) and Temporal Segment Density Peaks Clustering (TSDPC). The proposed TSDPC is a generic and powerful framework and it has two advantages compared with previous works, one is that it can calculate the number of key frames automatically. The other is that it can preserve the temporal information of the video. Thus it improves the efficiency of video classification. Furthermore, a Long Short-Term Memory network (LSTM) is added on the top of the CNN to further elevate the performance of classification. Moreover, a weight fusion strategy of different input networks is presented to boost the performance. By optimizing both video classification and key frame extraction simultaneously, we achieve better classification performance and higher efficiency. We evaluate our method on two popular datasets (i.e., HMDB51 and UCF101) and the experimental results consistently demonstrate that our strategy achieves competitive performance and efficiency compared with the state-of-the-art approaches.
Abstract:Algorithmic fairness has received increased attention in socially sensitive domains. While rich literature on mean fairness has been established, research on quantile fairness remains sparse but vital. To fulfill great needs and advocate the significance of quantile fairness, we propose a novel framework to learn a real-valued quantile function under the fairness requirement of Demographic Parity with respect to sensitive attributes, such as race or gender, and thereby derive a reliable fair prediction interval. Using optimal transport and functional synchronization techniques, we establish theoretical guarantees of distribution-free coverage and exact fairness for the induced prediction interval constructed by fair quantiles. A hands-on pipeline is provided to incorporate flexible quantile regressions with an efficient fairness adjustment post-processing algorithm. We demonstrate the superior empirical performance of this approach on several benchmark datasets. Our results show the model's ability to uncover the mechanism underlying the fairness-accuracy trade-off in a wide range of societal and medical applications.