Abstract:Running Automatic Speech Recognition (ASR) models on memory-constrained edge devices requires efficient compression. While layer-wise post-training quantization is effective, it suffers from error accumulation, especially in encoder-decoder architectures. Existing solutions like Quantization Error Propagation (QEP) are suboptimal for ASR due to the model's heterogeneity, processing acoustic features in the encoder while generating text in the decoder. To address this, we propose Fine-grained Alpha for Dynamic Quantization Error Propagation (FADE), which adaptively controls the trade-off between cross-layer error correction and local quantization. Experiments show that FADE significantly improves stability by reducing performance variance across runs, while simultaneously surpassing baselines in mean WER.
Abstract:While diffusion models have revolutionized text-to-image generation with their ability to synthesize realistic and diverse scenes, they continue to struggle to generate consistent and legible text within images. This shortcoming is commonly attributed to the locality bias inherent in diffusion-based generation, which limits their ability to model long-range spatial dependencies. In this paper, we introduce $\textbf{STRICT}$, a benchmark designed to systematically stress-test the ability of diffusion models to render coherent and instruction-aligned text in images. Our benchmark evaluates models across multiple dimensions: (1) the maximum length of readable text that can be generated; (2) the correctness and legibility of the generated text, and (3) the ratio of not following instructions for generating text. We evaluate several state-of-the-art models, including proprietary and open-source variants, and reveal persistent limitations in long-range consistency and instruction-following capabilities. Our findings provide insights into architectural bottlenecks and motivate future research directions in multimodal generative modeling. We release our entire evaluation pipeline at https://github.com/tianyu-z/STRICT-Bench.