Max Planck Institute for Intelligent Systems
Abstract:In zero-shot learning (ZSL), generative methods synthesize class-related sample features based on predefined semantic prototypes. They advance the ZSL performance by synthesizing unseen class sample features for better training the classifier. We observe that each class's predefined semantic prototype (also referred to as semantic embedding or condition) does not accurately match its real semantic prototype. So the synthesized visual sample features do not faithfully represent the real sample features, limiting the classifier training and existing ZSL performance. In this paper, we formulate this mismatch phenomenon as the visual-semantic domain shift problem. We propose a dynamic semantic prototype evolving (DSP) method to align the empirically predefined semantic prototypes and the real prototypes for class-related feature synthesis. The alignment is learned by refining sample features and semantic prototypes in a unified framework and making the synthesized visual sample features approach real sample features. After alignment, synthesized sample features from unseen classes are closer to the real sample features and benefit DSP to improve existing generative ZSL methods by 8.5\%, 8.0\%, and 9.7\% on the standard CUB, SUN AWA2 datasets, the significant performance improvement indicates that evolving semantic prototype explores a virgin field in ZSL.
Abstract:Unsupervised domain adaptation is critical to many real-world applications where label information is unavailable in the target domain. In general, without further assumptions, the joint distribution of the features and the label is not identifiable in the target domain. To address this issue, we rely on the property of minimal changes of causal mechanisms across domains to minimize unnecessary influences of distribution shifts. To encode this property, we first formulate the data-generating process using a latent variable model with two partitioned latent subspaces: invariant components whose distributions stay the same across domains and sparse changing components that vary across domains. We further constrain the domain shift to have a restrictive influence on the changing components. Under mild conditions, we show that the latent variables are partially identifiable, from which it follows that the joint distribution of data and labels in the target domain is also identifiable. Given the theoretical insights, we propose a practical domain adaptation framework called iMSDA. Extensive experimental results reveal that iMSDA outperforms state-of-the-art domain adaptation algorithms on benchmark datasets, demonstrating the effectiveness of our framework.
Abstract:The capacity to address counterfactual "what if" inquiries is crucial for understanding and making use of causal influences. Traditional counterfactual inference usually assumes a structural causal model is available. However, in practice, such a causal model is often unknown and may not be identifiable. This paper aims to perform reliable counterfactual inference based on the (learned) qualitative causal structure and observational data, without a given causal model or even directly estimating conditional distributions. We re-cast counterfactual reasoning as an extended quantile regression problem using neural networks. The approach is statistically more efficient than existing ones, and further makes it possible to develop the generalization ability of the estimated counterfactual outcome to unseen data and provide an upper bound on the generalization error. Experiment results on multiple datasets strongly support our theoretical claims.
Abstract:Masked autoencoder (MAE), a simple and effective self-supervised learning framework based on the reconstruction of masked image regions, has recently achieved prominent success in a variety of vision tasks. Despite the emergence of intriguing empirical observations on MAE, a theoretically principled understanding is still lacking. In this work, we formally characterize and justify existing empirical insights and provide theoretical guarantees of MAE. We formulate the underlying data-generating process as a hierarchical latent variable model and show that under reasonable assumptions, MAE provably identifies a set of latent variables in the hierarchical model, explaining why MAE can extract high-level information from pixels. Further, we show how key hyperparameters in MAE (the masking ratio and the patch size) determine which true latent variables to be recovered, therefore influencing the level of semantic information in the representation. Specifically, extremely large or small masking ratios inevitably lead to low-level representations. Our theory offers coherent explanations of existing empirical observations and provides insights for potential empirical improvements and fundamental limitations of the masking-reconstruction paradigm. We conduct extensive experiments to validate our theoretical insights.
Abstract:Causal discovery with latent confounders is an important but challenging task in many scientific areas. Despite the success of some overcomplete independent component analysis (OICA) based methods in certain domains, they are computationally expensive and can easily get stuck into local optima. We notice that interestingly, by making use of higher-order cumulants, there exists a closed-form solution to OICA in specific cases, e.g., when the mixing procedure follows the One-Latent-Component structure. In light of the power of the closed-form solution to OICA corresponding to the One-Latent-Component structure, we formulate a way to estimate the mixing matrix using the higher-order cumulants, and further propose the testable One-Latent-Component condition to identify the latent variables and determine causal orders. By iteratively removing the share identified latent components, we successfully extend the results on the One-Latent-Component structure to the Multi-Latent-Component structure and finally provide a practical and asymptotically correct algorithm to learn the causal structure with latent variables. Experimental results illustrate the asymptotic correctness and effectiveness of the proposed method.
Abstract:The need for more usable and explainable machine learning models in healthcare increases the importance of developing and utilizing causal discovery algorithms, which aim to discover causal relations by analyzing observational data. Explainable approaches aid clinicians and biologists in predicting the prognosis of diseases and suggesting proper treatments. However, very little research has been conducted at the crossroads between causal discovery, genomics, and breast cancer, and we aim to bridge this gap. Moreover, evaluation of causal discovery methods on real data is in general notoriously difficult because ground-truth causal relations are usually unknown, and accordingly, in this paper, we also propose to address the evaluation problem with large language models. In particular, we exploit suitable causal discovery algorithms to investigate how various perturbations in the genome can affect the survival of patients diagnosed with breast cancer. We used three main causal discovery algorithms: PC, Greedy Equivalence Search (GES), and a Generalized Precision Matrix-based one. We experiment with a subset of The Cancer Genome Atlas, which contains information about mutations, copy number variations, protein levels, and gene expressions for 705 breast cancer patients. Our findings reveal important factors related to the vital status of patients using causal discovery algorithms. However, the reliability of these results remains a concern in the medical domain. Accordingly, as another contribution of the work, the results are validated through language models trained on biomedical literature, such as BlueBERT and other large language models trained on medical corpora. Our results profess proper utilization of causal discovery algorithms and language models for revealing reliable causal relations for clinical applications.
Abstract:Document-level relation extraction (DocRE) aims to infer complex semantic relations among entities in a document. Distant supervision (DS) is able to generate massive auto-labeled data, which can improve DocRE performance. Recent works leverage pseudo labels generated by the pre-denoising model to reduce noise in DS data. However, unreliable pseudo labels bring new noise, e.g., adding false pseudo labels and losing correct DS labels. Therefore, how to select effective pseudo labels to denoise DS data is still a challenge in document-level distant relation extraction. To tackle this issue, we introduce uncertainty estimation technology to determine whether pseudo labels can be trusted. In this work, we propose a Document-level distant Relation Extraction framework with Uncertainty Guided label denoising, UGDRE. Specifically, we propose a novel instance-level uncertainty estimation method, which measures the reliability of the pseudo labels with overlapping relations. By further considering the long-tail problem, we design dynamic uncertainty thresholds for different types of relations to filter high-uncertainty pseudo labels. We conduct experiments on two public datasets. Our framework outperforms strong baselines by 1.91 F1 and 2.28 Ign F1 on the RE-DocRED dataset.
Abstract:While several previous studies have analyzed gender bias in research, we are still missing a comprehensive analysis of gender differences in the AI community, covering diverse topics and different development trends. Using the AI Scholar dataset of 78K researchers in the field of AI, we identify several gender differences: (1) Although female researchers tend to have fewer overall citations than males, this citation difference does not hold for all academic-age groups; (2) There exist large gender homophily in co-authorship on AI papers; (3) Female first-authored papers show distinct linguistic styles, such as longer text, more positive emotion words, and more catchy titles than male first-authored papers. Our analysis provides a window into the current demographic trends in our AI community, and encourages more gender equality and diversity in the future. Our code and data are at https://github.com/causalNLP/ai-scholar-gender.
Abstract:A Markov network characterizes the conditional independence structure, or Markov property, among a set of random variables. Existing work focuses on specific families of distributions (e.g., exponential families) and/or certain structures of graphs, and most of them can only handle variables of a single data type (continuous or discrete). In this work, we characterize the conditional independence structure in general distributions for all data types (i.e., continuous, discrete, and mixed-type) with a Generalized Precision Matrix (GPM). Besides, we also allow general functional relations among variables, thus giving rise to a Markov network structure learning algorithm in one of the most general settings. To deal with the computational challenge of the problem, especially for large graphs, we unify all cases under the same umbrella of a regularized score matching framework. We validate the theoretical results and demonstrate the scalability empirically in various settings.
Abstract:Graph neural networks aim to learn representations for graph-structured data and show impressive performance, particularly in node classification. Recently, many methods have studied the representations of GNNs from the perspective of optimization goals and spectral graph theory. However, the feature space that dominates representation learning has not been systematically studied in graph neural networks. In this paper, we propose to fill this gap by analyzing the feature space of both spatial and spectral models. We decompose graph neural networks into determined feature spaces and trainable weights, providing the convenience of studying the feature space explicitly using matrix space analysis. In particular, we theoretically find that the feature space tends to be linearly correlated due to repeated aggregations. Motivated by these findings, we propose 1) feature subspaces flattening and 2) structural principal components to expand the feature space. Extensive experiments verify the effectiveness of our proposed more comprehensive feature space, with comparable inference time to the baseline, and demonstrate its efficient convergence capability.