Macquarie University
Abstract:Users' involvement in creating and propagating news is a vital aspect of fake news detection in online social networks. Intuitively, credible users are more likely to share trustworthy news, while untrusted users have a higher probability of spreading untrustworthy news. In this paper, we construct a dual-layer graph (i.e., the news layer and the user layer) to extract multiple relations of news and users in social networks to derive rich information for detecting fake news. Based on the dual-layer graph, we propose a fake news detection model named Us-DeFake. It learns the propagation features of news in the news layer and the interaction features of users in the user layer. Through the inter-layer in the graph, Us-DeFake fuses the user signals that contain credibility information into the news features, to provide distinctive user-aware embeddings of news for fake news detection. The training process conducts on multiple dual-layer subgraphs obtained by a graph sampler to scale Us-DeFake in large scale social networks. Extensive experiments on real-world datasets illustrate the superiority of Us-DeFake which outperforms all baselines, and the users' credibility signals learned by interaction relation can notably improve the performance of our model.
Abstract:Generative models have been very successful over the years and have received significant attention for synthetic data generation. As deep learning models are getting more and more complex, they require large amounts of data to perform accurately. In medical image analysis, such generative models play a crucial role as the available data is limited due to challenges related to data privacy, lack of data diversity, or uneven data distributions. In this paper, we present a method to generate brain tumor MRI images using generative adversarial networks. We have utilized StyleGAN2 with ADA methodology to generate high-quality brain MRI with tumors while using a significantly smaller amount of training data when compared to the existing approaches. We use three pre-trained models for transfer learning. Results demonstrate that the proposed method can learn the distributions of brain tumors. Furthermore, the model can generate high-quality synthetic brain MRI with a tumor that can limit the small sample size issues. The approach can addresses the limited data availability by generating realistic-looking brain MRI with tumors. The code is available at: ~\url{https://github.com/rizwanqureshi123/Brain-Tumor-Synthetic-Data}.
Abstract:Graph anomaly detection in this paper aims to distinguish abnormal nodes that behave differently from the benign ones accounting for the majority of graph-structured instances. Receiving increasing attention from both academia and industry, yet existing research on this task still suffers from two critical issues when learning informative anomalous behavior from graph data. For one thing, anomalies are usually hard to capture because of their subtle abnormal behavior and the shortage of background knowledge about them, which causes severe anomalous sample scarcity. Meanwhile, the overwhelming majority of objects in real-world graphs are normal, bringing the class imbalance problem as well. To bridge the gaps, this paper devises a novel Data Augmentation-based Graph Anomaly Detection (DAGAD) framework for attributed graphs, equipped with three specially designed modules: 1) an information fusion module employing graph neural network encoders to learn representations, 2) a graph data augmentation module that fertilizes the training set with generated samples, and 3) an imbalance-tailored learning module to discriminate the distributions of the minority (anomalous) and majority (normal) classes. A series of experiments on three datasets prove that DAGAD outperforms ten state-of-the-art baseline detectors concerning various mostly-used metrics, together with an extensive ablation study validating the strength of our proposed modules.
Abstract:Social networks are considered to be heterogeneous graph neural networks (HGNNs) with deep learning technological advances. HGNNs, compared to homogeneous data, absorb various aspects of information about individuals in the training stage. That means more information has been covered in the learning result, especially sensitive information. However, the privacy-preserving methods on homogeneous graphs only preserve the same type of node attributes or relationships, which cannot effectively work on heterogeneous graphs due to the complexity. To address this issue, we propose a novel heterogeneous graph neural network privacy-preserving method based on a differential privacy mechanism named HeteDP, which provides a double guarantee on graph features and topology. In particular, we first define a new attack scheme to reveal privacy leakage in the heterogeneous graphs. Specifically, we design a two-stage pipeline framework, which includes the privacy-preserving feature encoder and the heterogeneous link reconstructor with gradients perturbation based on differential privacy to tolerate data diversity and against the attack. To better control the noise and promote model performance, we utilize a bi-level optimization pattern to allocate a suitable privacy budget for the above two modules. Our experiments on four public benchmarks show that the HeteDP method is equipped to resist heterogeneous graph privacy leakage with admirable model generalization.
Abstract:Integrating multiple online social networks (OSNs) has important implications for many downstream social mining tasks, such as user preference modelling, recommendation, and link prediction. However, it is unfortunately accompanied by growing privacy concerns about leaking sensitive user information. How to fully utilize the data from different online social networks while preserving user privacy remains largely unsolved. To this end, we propose a Cross-network Social User Embedding framework, namely DP-CroSUE, to learn the comprehensive representations of users in a privacy-preserving way. We jointly consider information from partially aligned social networks with differential privacy guarantees. In particular, for each heterogeneous social network, we first introduce a hybrid differential privacy notion to capture the variation of privacy expectations for heterogeneous data types. Next, to find user linkages across social networks, we make unsupervised user embedding-based alignment in which the user embeddings are achieved by the heterogeneous network embedding technology. To further enhance user embeddings, a novel cross-network GCN embedding model is designed to transfer knowledge across networks through those aligned users. Extensive experiments on three real-world datasets demonstrate that our approach makes a significant improvement on user interest prediction tasks as well as defending user attribute inference attacks from embedding.
Abstract:DBSCAN is widely used in many scientific and engineering fields because of its simplicity and practicality. However, due to its high sensitivity parameters, the accuracy of the clustering result depends heavily on practical experience. In this paper, we first propose a novel Deep Reinforcement Learning guided automatic DBSCAN parameters search framework, namely DRL-DBSCAN. The framework models the process of adjusting the parameter search direction by perceiving the clustering environment as a Markov decision process, which aims to find the best clustering parameters without manual assistance. DRL-DBSCAN learns the optimal clustering parameter search policy for different feature distributions via interacting with the clusters, using a weakly-supervised reward training policy network. In addition, we also present a recursive search mechanism driven by the scale of the data to efficiently and controllably process large parameter spaces. Extensive experiments are conducted on five artificial and real-world datasets based on the proposed four working modes. The results of offline and online tasks show that the DRL-DBSCAN not only consistently improves DBSCAN clustering accuracy by up to 26% and 25% respectively, but also can stably find the dominant parameters with high computational efficiency. The code is available at https://github.com/RingBDStack/DRL-DBSCAN.
Abstract:Clustering is a fundamental machine learning task which has been widely studied in the literature. Classic clustering methods follow the assumption that data are represented as features in a vectorized form through various representation learning techniques. As the data become increasingly complicated and complex, the shallow (traditional) clustering methods can no longer handle the high-dimensional data type. With the huge success of deep learning, especially the deep unsupervised learning, many representation learning techniques with deep architectures have been proposed in the past decade. Recently, the concept of Deep Clustering, i.e., jointly optimizing the representation learning and clustering, has been proposed and hence attracted growing attention in the community. Motivated by the tremendous success of deep learning in clustering, one of the most fundamental machine learning tasks, and the large number of recent advances in this direction, in this paper we conduct a comprehensive survey on deep clustering by proposing a new taxonomy of different state-of-the-art approaches. We summarize the essential components of deep clustering and categorize existing methods by the ways they design interactions between deep representation learning and clustering. Moreover, this survey also provides the popular benchmark datasets, evaluation metrics and open-source implementations to clearly illustrate various experimental settings. Last but not least, we discuss the practical applications of deep clustering and suggest challenging topics deserving further investigations as future directions.
Abstract:Graph-structured data consisting of objects (i.e., nodes) and relationships among objects (i.e., edges) are ubiquitous. Graph-level learning is a matter of studying a collection of graphs instead of a single graph. Traditional graph-level learning methods used to be the mainstream. However, with the increasing scale and complexity of graphs, Graph-level Neural Networks (GLNNs, deep learning-based graph-level learning methods) have been attractive due to their superiority in modeling high-dimensional data. Thus, a survey on GLNNs is necessary. To frame this survey, we propose a systematic taxonomy covering GLNNs upon deep neural networks, graph neural networks, and graph pooling. The representative and state-of-the-art models in each category are focused on this survey. We also investigate the reproducibility, benchmarks, and new graph datasets of GLNNs. Finally, we conclude future directions to further push forward GLNNs. The repository of this survey is available at https://github.com/GeZhangMQ/Awesome-Graph-level-Neural-Networks.
Abstract:The rising popularity of online social network services has attracted lots of research on mining social media data, especially on mining social events. Social event detection, due to its wide applications, has now become a trivial task. State-of-the-art approaches exploiting Graph Neural Networks (GNNs) usually follow a two-step strategy: 1) constructing text graphs based on various views (\textit{co-user}, \textit{co-entities} and \textit{co-hashtags}); and 2) learning a unified text representation by a specific GNN model. Generally, the results heavily rely on the quality of the constructed graphs and the specific message passing scheme. However, existing methods have deficiencies in both aspects: 1) They fail to recognize the noisy information induced by unreliable views. 2) Temporal information which works as a vital indicator of events is neglected in most works. To this end, we propose ETGNN, a novel Evidential Temporal-aware Graph Neural Network. Specifically, we construct view-specific graphs whose nodes are the texts and edges are determined by several types of shared elements respectively. To incorporate temporal information into the message passing scheme, we introduce a novel temporal-aware aggregator which assigns weights to neighbours according to an adaptive time exponential decay formula. Considering the view-specific uncertainty, the representations of all views are converted into mass functions through evidential deep learning (EDL) neural networks, and further combined via Dempster-Shafer theory (DST) to make the final detection. Experimental results on three real-world datasets demonstrate the effectiveness of ETGNN in accuracy, reliability and robustness in social event detection.
Abstract:Knowledge-aware methods have boosted a range of Natural Language Processing applications over the last decades. With the gathered momentum, knowledge recently has been pumped into enormous attention in document summarization research. Previous works proved that knowledge-embedded document summarizers excel at generating superior digests, especially in terms of informativeness, coherence, and fact consistency. This paper pursues to present the first systematic survey for the state-of-the-art methodologies that embed knowledge into document summarizers. Particularly, we propose novel taxonomies to recapitulate knowledge and knowledge embeddings under the document summarization view. We further explore how embeddings are generated in learning architectures of document summarization models, especially in deep learning models. At last, we discuss the challenges of this topic and future directions.