Abstract:Large Audio-Language Models (LALMs) are increasingly deployed in real-world applications, yet their robustness against malicious audio injection attacks remains underexplored. This study systematically evaluates five leading LALMs across four attack scenarios: Audio Interference Attack, Instruction Following Attack, Context Injection Attack, and Judgment Hijacking Attack. Using metrics like Defense Success Rate, Context Robustness Score, and Judgment Robustness Index, their vulnerabilities and resilience were quantitatively assessed. Experimental results reveal significant performance disparities among models; no single model consistently outperforms others across all attack types. The position of malicious content critically influences attack effectiveness, particularly when placed at the beginning of sequences. A negative correlation between instruction-following capability and robustness suggests models adhering strictly to instructions may be more susceptible, contrasting with greater resistance by safety-aligned models. Additionally, system prompts show mixed effectiveness, indicating the need for tailored strategies. This work introduces a benchmark framework and highlights the importance of integrating robustness into training pipelines. Findings emphasize developing multi-modal defenses and architectural designs that decouple capability from susceptibility for secure LALMs deployment.
Abstract:In recent years, deep learning-based Monocular Depth Estimation (MDE) models have been widely applied in fields such as autonomous driving and robotics. However, their vulnerability to backdoor attacks remains unexplored. To fill the gap in this area, we conduct a comprehensive investigation of backdoor attacks against MDE models. Typically, existing backdoor attack methods can not be applied to MDE models. This is because the label used in MDE is in the form of a depth map. To address this, we propose BadDepth, the first backdoor attack targeting MDE models. BadDepth overcomes this limitation by selectively manipulating the target object's depth using an image segmentation model and restoring the surrounding areas via depth completion, thereby generating poisoned datasets for object-level backdoor attacks. To improve robustness in physical world scenarios, we further introduce digital-to-physical augmentation to adapt to the domain gap between the physical world and the digital domain. Extensive experiments on multiple models validate the effectiveness of BadDepth in both the digital domain and the physical world, without being affected by environmental factors.
Abstract:With the widespread application of super-resolution (SR) in various fields, researchers have begun to investigate its security. Previous studies have demonstrated that SR models can also be subjected to backdoor attacks through data poisoning, affecting downstream tasks. A backdoor SR model generates an attacker-predefined target image when given a triggered image while producing a normal high-resolution (HR) output for clean images. However, prior backdoor attacks on SR models have primarily focused on the stealthiness of poisoned low-resolution (LR) images while ignoring the stealthiness of poisoned HR images, making it easy for users to detect anomalous data. To address this problem, we propose BadSR, which improves the stealthiness of poisoned HR images. The key idea of BadSR is to approximate the clean HR image and the pre-defined target image in the feature space while ensuring that modifications to the clean HR image remain within a constrained range. The poisoned HR images generated by BadSR can be integrated with existing triggers. To further improve the effectiveness of BadSR, we design an adversarially optimized trigger and a backdoor gradient-driven poisoned sample selection method based on a genetic algorithm. The experimental results show that BadSR achieves a high attack success rate in various models and data sets, significantly affecting downstream tasks.
Abstract:Reference-based image super-resolution (RefSR) represents a promising advancement in super-resolution (SR). In contrast to single-image super-resolution (SISR), RefSR leverages an additional reference image to help recover high-frequency details, yet its vulnerability to backdoor attacks has not been explored. To fill this research gap, we propose a novel attack framework called BadRefSR, which embeds backdoors in the RefSR model by adding triggers to the reference images and training with a mixed loss function. Extensive experiments across various backdoor attack settings demonstrate the effectiveness of BadRefSR. The compromised RefSR network performs normally on clean input images, while outputting attacker-specified target images on triggered input images. Our study aims to alert researchers to the potential backdoor risks in RefSR. Codes are available at https://github.com/xuefusiji/BadRefSR.
Abstract:Recently, the success of Text-to-Image (T2I) models has led to the rise of numerous third-party platforms, which claim to provide cheaper API services and more flexibility in model options. However, this also raises a new security concern: Are these third-party services truly offering the models they claim? To address this problem, we propose the first T2I model verification method named Text-to-Image Model Verification via Non-Transferable Adversarial Attacks (TVN). The non-transferability of adversarial examples means that these examples are only effective on a target model and ineffective on other models, thereby allowing for the verification of the target model. TVN utilizes the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to optimize the cosine similarity of a prompt's text encoding, generating non-transferable adversarial prompts. By calculating the CLIP-text scores between the non-transferable adversarial prompts without perturbations and the images, we can verify if the model matches the claimed target model, based on a 3-sigma threshold. The experiments showed that TVN performed well in both closed-set and open-set scenarios, achieving a verification accuracy of over 90\%. Moreover, the adversarial prompts generated by TVN significantly reduced the CLIP-text scores of the target model, while having little effect on other models.
Abstract:Vision Transformers (ViTs) have outperformed traditional Convolutional Neural Networks (CNN) across various computer vision tasks. However, akin to CNN, ViTs are vulnerable to backdoor attacks, where the adversary embeds the backdoor into the victim model, causing it to make wrong predictions about testing samples containing a specific trigger. Existing backdoor attacks against ViTs have the limitation of failing to strike an optimal balance between attack stealthiness and attack effectiveness. In this work, we propose an Attention Gradient-based Erosion Backdoor (AGEB) targeted at ViTs. Considering the attention mechanism of ViTs, AGEB selectively erodes pixels in areas of maximal attention gradient, embedding a covert backdoor trigger. Unlike previous backdoor attacks against ViTs, AGEB achieves an optimal balance between attack stealthiness and attack effectiveness, ensuring the trigger remains invisible to human detection while preserving the model's accuracy on clean samples. Extensive experimental evaluations across various ViT architectures and datasets confirm the effectiveness of AGEB, achieving a remarkable Attack Success Rate (ASR) without diminishing Clean Data Accuracy (CDA). Furthermore, the stealthiness of AGEB is rigorously validated, demonstrating minimal visual discrepancies between the clean and the triggered images.