Abstract:Effective surrogate models are critical for accelerating scientific simulations. Implicit neural representations (INRs) offer a compact and continuous framework for modeling spatially structured data, but they often struggle with complex scientific fields exhibiting localized, high-frequency variations. Recent approaches address this by introducing additional features along rigid geometric structures (e.g., grids), but at the cost of flexibility and increased model size. In this paper, we propose a simple yet effective alternative: Feature-Adaptive INR (FA-INR). FA-INR leverages cross-attention to an augmented memory bank to learn flexible feature representations, enabling adaptive allocation of model capacity based on data characteristics, rather than rigid structural assumptions. To further improve scalability, we introduce a coordinate-guided mixture of experts (MoE) that enhances the specialization and efficiency of feature representations. Experiments on three large-scale ensemble simulation datasets show that FA-INR achieves state-of-the-art fidelity while significantly reducing model size, establishing a new trade-off frontier between accuracy and compactness for INR-based surrogates.
Abstract:With the growing computational power available for high-resolution ensemble simulations in scientific fields such as cosmology and oceanology, storage and computational demands present significant challenges. Current surrogate models fall short in the flexibility of point- or region-based predictions as the entire field reconstruction is required for each parameter setting, hence hindering the efficiency of parameter space exploration. Limitations exist in capturing physical attribute distributions and pinpointing optimal parameter configurations. In this work, we propose Explorable INR, a novel implicit neural representation-based surrogate model, designed to facilitate exploration and allow point-based spatial queries without computing full-scale field data. In addition, to further address computational bottlenecks of spatial exploration, we utilize probabilistic affine forms (PAFs) for uncertainty propagation through Explorable INR to obtain statistical summaries, facilitating various ensemble analysis and visualization tasks that are expensive with existing models. Furthermore, we reformulate the parameter exploration problem as optimization tasks using gradient descent and KL divergence minimization that ensures scalability. We demonstrate that the Explorable INR with the proposed approach for spatial and parameter exploration can significantly reduce computation and memory costs while providing effective ensemble analysis.