Abstract:Contraction metrics are crucial in control theory because they provide a powerful framework for analyzing stability, robustness, and convergence of various dynamical systems. However, identifying these metrics for complex nonlinear systems remains an open challenge due to the lack of scalable and effective tools. This paper explores the approach of learning verifiable contraction metrics parametrized as neural networks (NNs) for discrete-time nonlinear dynamical systems. While prior works on formal verification of contraction metrics for general nonlinear systems have focused on convex optimization methods (e.g. linear matrix inequalities, etc) under the assumption of continuously differentiable dynamics, the growing prevalence of NN-based controllers, often utilizing ReLU activations, introduces challenges due to the non-smooth nature of the resulting closed-loop dynamics. To bridge this gap, we establish a new sufficient condition for establishing formal neural contraction metrics for general discrete-time nonlinear systems assuming only the continuity of the dynamics. We show that from a computational perspective, our sufficient condition can be efficiently verified using the state-of-the-art neural network verifier $\alpha,\!\beta$-CROWN, which scales up non-convex neural network verification via novel integration of symbolic linear bound propagation and branch-and-bound. Built upon our analysis tool, we further develop a learning method for synthesizing neural contraction metrics from sampled data. Finally, our approach is validated through the successful synthesis and verification of NN contraction metrics for various nonlinear examples.
Abstract:A ReLU network is a piecewise linear function over polytopes. Figuring out the properties of such polytopes is of fundamental importance for the research and development of neural networks. So far, either theoretical or empirical studies on polytopes only stay at the level of counting their number, which is far from a complete characterization of polytopes. To upgrade the characterization to a new level, here we propose to study the shapes of polytopes via the number of simplices obtained by triangulating the polytope. Then, by computing and analyzing the histogram of simplices across polytopes, we find that a ReLU network has relatively simple polytopes under both initialization and gradient descent, although these polytopes theoretically can be rather diverse and complicated. This finding can be appreciated as a novel implicit bias. Next, we use nontrivial combinatorial derivation to theoretically explain why adding depth does not create a more complicated polytope by bounding the average number of faces of polytopes with a function of the dimensionality. Our results concretely reveal what kind of simple functions a network learns and its space partition property. Also, by characterizing the shape of polytopes, the number of simplices be a leverage for other problems, \textit{e.g.}, serving as a generic functional complexity measure to explain the power of popular shortcut networks such as ResNet and analyzing the impact of different regularization strategies on a network's space partition.