University of California San Diego, USA
Abstract:Scene-level point cloud registration is very challenging when considering dynamic foregrounds. Existing indoor datasets mostly assume rigid motions, so the trained models cannot robustly handle scenes with non-rigid motions. On the other hand, non-rigid datasets are mainly object-level, so the trained models cannot generalize well to complex scenes. This paper presents HybridReg, a new approach to 3D point cloud registration, learning uncertainty mask to account for hybrid motions: rigid for backgrounds and non-rigid/rigid for instance-level foregrounds. First, we build a scene-level 3D registration dataset, namely HybridMatch, designed specifically with strategies to arrange diverse deforming foregrounds in a controllable manner. Second, we account for different motion types and formulate a mask-learning module to alleviate the interference of deforming outliers. Third, we exploit a simple yet effective negative log-likelihood loss to adopt uncertainty to guide the feature extraction and correlation computation. To our best knowledge, HybridReg is the first work that exploits hybrid motions for robust point cloud registration. Extensive experiments show HybridReg's strengths, leading it to achieve state-of-the-art performance on both widely-used indoor and outdoor datasets.
Abstract:3D neuroimages provide a comprehensive view of brain structure and function, aiding in precise localization and functional connectivity analysis. Segmentation of white matter (WM) tracts using 3D neuroimages is vital for understanding the brain's structural connectivity in both healthy and diseased states. One-shot Class Incremental Semantic Segmentation (OCIS) refers to effectively segmenting new (novel) classes using only a single sample while retaining knowledge of old (base) classes without forgetting. Voxel-contrastive OCIS methods adjust the feature space to alleviate the feature overlap problem between the base and novel classes. However, since WM tract segmentation is a multi-label segmentation task, existing single-label voxel contrastive-based methods may cause inherent contradictions. To address this, we propose a new multi-label voxel contrast framework called MultiCo3D for one-shot class incremental tract segmentation. Our method utilizes uncertainty distillation to preserve base tract segmentation knowledge while adjusting the feature space with multi-label voxel contrast to alleviate feature overlap when learning novel tracts and dynamically weighting multi losses to balance overall loss. We compare our method against several state-of-the-art (SOTA) approaches. The experimental results show that our method significantly enhances one-shot class incremental tract segmentation accuracy across five different experimental setups on HCP and Preto datasets.
Abstract:Fluid antenna system (FAS) is an emerging technology that uses the new form of shape- and position-reconfigurable antennas to empower the physical layer for wireless communications. Prior studies on FAS were however limited to narrowband channels. Motivated by this, this paper addresses the integration of FAS in the fifth generation (5G) orthogonal frequency division multiplexing (OFDM) framework to address the challenges posed by wideband communications. We propose the framework of the wideband FAS OFDM system that includes a novel port selection matrix. Then we derive the achievable rate expression and design the adaptive modulation and coding (AMC) scheme based on the rate. Extensive link-level simulation results demonstrate striking improvements of FAS in the wideband channels, underscoring the potential of FAS in future wireless communications.
Abstract:Large language models (LLMs) based agent systems have made great strides in real-world applications beyond traditional NLP tasks. This paper proposes a new LLM-powered Multi-Agent System (LLM-MAS) benchmark, Collab-Overcooked, built on the popular Overcooked-AI game with more applicable and challenging tasks in interactive environments. Collab-Overcooked extends existing benchmarks from two novel perspectives. First, it provides a multi-agent framework supporting diverse tasks and objectives and encourages collaboration through natural language communication. Second, it introduces a spectrum of process-oriented evaluation metrics to assess the fine-grained collaboration capabilities of different LLM agents, a dimension often overlooked in prior work. We conduct extensive experiments over 10 popular LLMs and show that, while the LLMs present a strong ability in goal interpretation, there is a significant discrepancy in active collaboration and continuous adaption that are critical for efficiently fulfilling complicated tasks. Notably, we highlight the strengths and weaknesses in LLM-MAS and provide insights for improving and evaluating LLM-MAS on a unified and open-sourced benchmark. Environments, 30 open-ended tasks, and an integrated evaluation package are now publicly available at https://github.com/YusaeMeow/Collab-Overcooked.
Abstract:Medical image registration is a fundamental task in medical image analysis, aiming to establish spatial correspondences between paired images. However, existing unsupervised deformable registration methods rely solely on intensity-based similarity metrics, lacking explicit anatomical knowledge, which limits their accuracy and robustness. Vision foundation models, such as the Segment Anything Model (SAM), can generate high-quality segmentation masks that provide explicit anatomical structure knowledge, addressing the limitations of traditional methods that depend only on intensity similarity. Based on this, we propose a novel SAM-assisted registration framework incorporating prototype learning and contour awareness. The framework includes: (1) Explicit anatomical information injection, where SAM-generated segmentation masks are used as auxiliary inputs throughout training and testing to ensure the consistency of anatomical information; (2) Prototype learning, which leverages segmentation masks to extract prototype features and aligns prototypes to optimize semantic correspondences between images; and (3) Contour-aware loss, a contour-aware loss is designed that leverages the edges of segmentation masks to improve the model's performance in fine-grained deformation fields. Extensive experiments demonstrate that the proposed framework significantly outperforms existing methods across multiple datasets, particularly in challenging scenarios with complex anatomical structures and ambiguous boundaries. Our code is available at https://github.com/HaoXu0507/IPMI25-SAM-Assisted-Registration.
Abstract:With the growing demand for massive internet of things (IoT), new IoT technology, namely ambient IoT (A-IoT), has been studied in the 3rd Generation Partnership Project (3GPP). A-IoT devices are batteryless and consume ultra-low power, relying on energy harvesting and energy storage to capture a small amount of energy for communication. A promising usecase of A-IoT is inventory, where a reader communicates with hundreds of A-IoT devices to identify them. However, energy harvesting required before communication can significantly delay or even fail inventory completion. In this work, solutions including duty cycled monitoring (DCM), device grouping and low-power receiving chain are proposed. Evaluation results show that the time required for a reader to complete an inventory procedure for hundreds of A-IoT devices can be reduced by 50% to 83% with the proposed methods.
Abstract:Large Language Models (LLMs) exhibit strong general-purpose language capabilities. However, fine-tuning these models on domain-specific tasks often leads to catastrophic forgetting, where the model overwrites or loses essential knowledge acquired during pretraining. This phenomenon significantly limits the broader applicability of LLMs. To address this challenge, we propose a novel approach to compute the element-wise importance of model parameters crucial for preserving general knowledge during fine-tuning. Our method utilizes a dual-objective optimization strategy: (1) regularization loss to retain the parameter crucial for general knowledge; (2) cross-entropy loss to adapt to domain-specific tasks. Additionally, we introduce layer-wise coefficients to account for the varying contributions of different layers, dynamically balancing the dual-objective optimization. Extensive experiments on scientific, medical, and physical tasks using GPT-J and LLaMA-3 demonstrate that our approach mitigates catastrophic forgetting while enhancing model adaptability. Compared to previous methods, our solution is approximately 20 times faster and requires only 10%-15% of the storage, highlighting the practical efficiency. The code will be released.
Abstract:This paper presents a comprehensive study on low-complexity waveform, modulation and coding (WMC) designs for the 3rd Generation Partnership Project (3GPP) Ambient Internet of Things (A-IoT). A-IoT is a low-cost, low-power IoT system inspired by Ultra High Frequency (UHF) Radio Frequency Identification (RFID) and aims to leverage existing cellular network infrastructure for efficient RF tag management. The paper compares the physical layer (PHY) design challenges and requirements of RFID and A-IoT, particularly focusing on backscatter communications. An overview of the standardization for PHY designs in Release 19 A-IoT is provided, along with detailed schemes of the proposed low-complex WMC designs. The performance of device-to-reader link designs is validated through simulations, demonstrating 6 dB improvements of the proposed baseband waveform with coherent receivers compared to RFID line coding-based solutions with non-coherent receivers when channel coding is adopted.
Abstract:Fluid antenna multiple access (FAMA), enabled by the fluid antenna system (FAS), offers a new and straightforward solution to massive connectivity. Previous results on FAMA were primarily based on narrowband channels. This paper studies the adoption of FAMA within the fifth-generation (5G) orthogonal frequency division multiplexing (OFDM) framework, referred to as OFDM-FAMA, and evaluate its performance in broadband multipath channels. We first design the OFDM-FAMA system, taking into account 5G channel coding and OFDM modulation. Then the system's achievable rate is analyzed, and an algorithm to approximate the FAS configuration at each user is proposed based on the rate. Extensive link-level simulation results reveal that OFDM-FAMA can significantly improve the multiplexing gain over the OFDM system with fixed-position antenna (FPA) users, especially when robust channel coding is applied and the number of radio-frequency (RF) chains at each user is small.
Abstract:Unknown Object Detection (UOD) aims to identify objects of unseen categories, differing from the traditional detection paradigm limited by the closed-world assumption. A key component of UOD is learning a generalized representation, i.e. objectness for both known and unknown categories to distinguish and localize objects from the background in a class-agnostic manner. However, previous methods obtain supervision signals for learning objectness in isolation from either localization or classification information, leading to poor performance for UOD. To address this issue, we propose a transformer-based UOD framework, UN-DETR. Based on this, we craft Instance Presence Score (IPS) to represent the probability of an object's presence. For the purpose of information complementarity, IPS employs a strategy of joint supervised learning, integrating attributes representing general objectness from the positional and the categorical latent space as supervision signals. To enhance IPS learning, we introduce a one-to-many assignment strategy to incorporate more supervision. Then, we propose Unbiased Query Selection to provide premium initial query vectors for the decoder. Additionally, we propose an IPS-guided post-process strategy to filter redundant boxes and correct classification predictions for known and unknown objects. Finally, we pretrain the entire UN-DETR in an unsupervised manner, in order to obtain objectness prior. Our UN-DETR is comprehensively evaluated on multiple UOD and known detection benchmarks, demonstrating its effectiveness and achieving state-of-the-art performance.