Alert button
Picture for Golan Pundak

Golan Pundak

Alert button

SLM: Bridge the thin gap between speech and text foundation models

Sep 30, 2023
Mingqiu Wang, Wei Han, Izhak Shafran, Zelin Wu, Chung-Cheng Chiu, Yuan Cao, Yongqiang Wang, Nanxin Chen, Yu Zhang, Hagen Soltau, Paul Rubenstein, Lukas Zilka, Dian Yu, Zhong Meng, Golan Pundak, Nikhil Siddhartha, Johan Schalkwyk, Yonghui Wu

Figure 1 for SLM: Bridge the thin gap between speech and text foundation models
Figure 2 for SLM: Bridge the thin gap between speech and text foundation models
Figure 3 for SLM: Bridge the thin gap between speech and text foundation models
Figure 4 for SLM: Bridge the thin gap between speech and text foundation models

We present a joint Speech and Language Model (SLM), a multitask, multilingual, and dual-modal model that takes advantage of pretrained foundational speech and language models. SLM freezes the pretrained foundation models to maximally preserves their capabilities, and only trains a simple adapter with just 1\% (156M) of the foundation models' parameters. This adaptation not only leads SLM to achieve strong performance on conventional tasks such as speech recognition (ASR) and speech translation (AST), but also introduces the novel capability of zero-shot instruction-following for more diverse tasks: given a speech input and a text instruction, SLM is able to perform unseen generation tasks including contextual biasing ASR using real-time context, dialog generation, speech continuation, and question answering, etc. Our approach demonstrates that the representational gap between pretrained speech and language models might be narrower than one would expect, and can be bridged by a simple adaptation mechanism. As a result, SLM is not only efficient to train, but also inherits strong capabilities already acquired in foundation models of different modalities.

Viaarxiv icon

Contextual Biasing with the Knuth-Morris-Pratt Matching Algorithm

Sep 29, 2023
Weiran Wang, Zelin Wu, Diamantino Caseiro, Tsendsuren Munkhdalai, Khe Chai Sim, Pat Rondon, Golan Pundak, Gan Song, Rohit Prabhavalkar, Zhong Meng, Ding Zhao, Tara Sainath, Pedro Moreno Mengibar

Contextual biasing refers to the problem of biasing the automatic speech recognition (ASR) systems towards rare entities that are relevant to the specific user or application scenarios. We propose algorithms for contextual biasing based on the Knuth-Morris-Pratt algorithm for pattern matching. During beam search, we boost the score of a token extension if it extends matching into a set of biasing phrases. Our method simulates the classical approaches often implemented in the weighted finite state transducer (WFST) framework, but avoids the FST language altogether, with careful considerations on memory footprint and efficiency on tensor processing units (TPUs) by vectorization. Without introducing additional model parameters, our method achieves significant word error rate (WER) reductions on biasing test sets by itself, and yields further performance gain when combined with a model-based biasing method.

Viaarxiv icon

Improving Proper Noun Recognition in End-to-End ASR By Customization of the MWER Loss Criterion

May 19, 2020
Cal Peyser, Tara N. Sainath, Golan Pundak

Figure 1 for Improving Proper Noun Recognition in End-to-End ASR By Customization of the MWER Loss Criterion
Figure 2 for Improving Proper Noun Recognition in End-to-End ASR By Customization of the MWER Loss Criterion
Figure 3 for Improving Proper Noun Recognition in End-to-End ASR By Customization of the MWER Loss Criterion
Figure 4 for Improving Proper Noun Recognition in End-to-End ASR By Customization of the MWER Loss Criterion

Proper nouns present a challenge for end-to-end (E2E) automatic speech recognition (ASR) systems in that a particular name may appear only rarely during training, and may have a pronunciation similar to that of a more common word. Unlike conventional ASR models, E2E systems lack an explicit pronounciation model that can be specifically trained with proper noun pronounciations and a language model that can be trained on a large text-only corpus. Past work has addressed this issue by incorporating additional training data or additional models. In this paper, we instead build on recent advances in minimum word error rate (MWER) training to develop two new loss criteria that specifically emphasize proper noun recognition. Unlike past work on this problem, this method requires no new data during training or external models during inference. We see improvements ranging from 2% to 7% relative on several relevant benchmarks.

Viaarxiv icon

A Streaming On-Device End-to-End Model Surpassing Server-Side Conventional Model Quality and Latency

Mar 28, 2020
Tara N. Sainath, Yanzhang He, Bo Li, Arun Narayanan, Ruoming Pang, Antoine Bruguier, Shuo-yiin Chang, Wei Li, Raziel Alvarez, Zhifeng Chen, Chung-Cheng Chiu, David Garcia, Alex Gruenstein, Ke Hu, Minho Jin, Anjuli Kannan, Qiao Liang, Ian McGraw, Cal Peyser, Rohit Prabhavalkar, Golan Pundak, David Rybach, Yuan Shangguan, Yash Sheth, Trevor Strohman, Mirko Visontai, Yonghui Wu, Yu Zhang, Ding Zhao

Figure 1 for A Streaming On-Device End-to-End Model Surpassing Server-Side Conventional Model Quality and Latency
Figure 2 for A Streaming On-Device End-to-End Model Surpassing Server-Side Conventional Model Quality and Latency
Figure 3 for A Streaming On-Device End-to-End Model Surpassing Server-Side Conventional Model Quality and Latency
Figure 4 for A Streaming On-Device End-to-End Model Surpassing Server-Side Conventional Model Quality and Latency

Thus far, end-to-end (E2E) models have not been shown to outperform state-of-the-art conventional models with respect to both quality, i.e., word error rate (WER), and latency, i.e., the time the hypothesis is finalized after the user stops speaking. In this paper, we develop a first-pass Recurrent Neural Network Transducer (RNN-T) model and a second-pass Listen, Attend, Spell (LAS) rescorer that surpasses a conventional model in both quality and latency. On the quality side, we incorporate a large number of utterances across varied domains to increase acoustic diversity and the vocabulary seen by the model. We also train with accented English speech to make the model more robust to different pronunciations. In addition, given the increased amount of training data, we explore a varied learning rate schedule. On the latency front, we explore using the end-of-sentence decision emitted by the RNN-T model to close the microphone, and also introduce various optimizations to improve the speed of LAS rescoring. Overall, we find that RNN-T+LAS offers a better WER and latency tradeoff compared to a conventional model. For example, for the same latency, RNN-T+LAS obtains a 8% relative improvement in WER, while being more than 400-times smaller in model size.

* In Proceedings of IEEE ICASSP 2020 
Viaarxiv icon

Phoneme-Based Contextualization for Cross-Lingual Speech Recognition in End-to-End Models

Jul 22, 2019
Ke Hu, Antoine Bruguier, Tara N. Sainath, Rohit Prabhavalkar, Golan Pundak

Figure 1 for Phoneme-Based Contextualization for Cross-Lingual Speech Recognition in End-to-End Models
Figure 2 for Phoneme-Based Contextualization for Cross-Lingual Speech Recognition in End-to-End Models
Figure 3 for Phoneme-Based Contextualization for Cross-Lingual Speech Recognition in End-to-End Models
Figure 4 for Phoneme-Based Contextualization for Cross-Lingual Speech Recognition in End-to-End Models

Contextual automatic speech recognition, i.e., biasing recognition towards a given context (e.g. user's playlists, or contacts), is challenging in end-to-end (E2E) models. Such models maintain a limited number of candidates during beam-search decoding, and have been found to recognize rare named entities poorly. The problem is exacerbated when biasing towards proper nouns in foreign languages, e.g., geographic location names, which are virtually unseen in training and are thus out-of-vocabulary (OOV). While grapheme or wordpiece E2E models might have a difficult time spelling OOV words, phonemes are more acoustically salient and past work has shown that E2E phoneme models can better predict such words. In this work, we propose an E2E model containing both English wordpieces and phonemes in the modeling space, and perform contextual biasing of foreign words at the phoneme level by mapping pronunciations of foreign words into similar English phonemes. In experimental evaluations, we find that the proposed approach performs 16% better than a grapheme-only biasing model, and 8% better than a wordpiece-only biasing model on a foreign place name recognition task, with only slight degradation on regular English tasks.

Viaarxiv icon

Lingvo: a Modular and Scalable Framework for Sequence-to-Sequence Modeling

Feb 21, 2019
Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng Chen, Mia X. Chen, Ye Jia, Anjuli Kannan, Tara Sainath, Yuan Cao, Chung-Cheng Chiu, Yanzhang He, Jan Chorowski, Smit Hinsu, Stella Laurenzo, James Qin, Orhan Firat, Wolfgang Macherey, Suyog Gupta, Ankur Bapna, Shuyuan Zhang, Ruoming Pang, Ron J. Weiss, Rohit Prabhavalkar, Qiao Liang, Benoit Jacob, Bowen Liang, HyoukJoong Lee, Ciprian Chelba, Sébastien Jean, Bo Li, Melvin Johnson, Rohan Anil, Rajat Tibrewal, Xiaobing Liu, Akiko Eriguchi, Navdeep Jaitly, Naveen Ari, Colin Cherry, Parisa Haghani, Otavio Good, Youlong Cheng, Raziel Alvarez, Isaac Caswell, Wei-Ning Hsu, Zongheng Yang, Kuan-Chieh Wang, Ekaterina Gonina, Katrin Tomanek, Ben Vanik, Zelin Wu, Llion Jones, Mike Schuster, Yanping Huang, Dehao Chen, Kazuki Irie, George Foster, John Richardson, Klaus Macherey, Antoine Bruguier, Heiga Zen, Colin Raffel, Shankar Kumar, Kanishka Rao, David Rybach, Matthew Murray, Vijayaditya Peddinti, Maxim Krikun, Michiel A. U. Bacchiani, Thomas B. Jablin, Rob Suderman, Ian Williams, Benjamin Lee, Deepti Bhatia, Justin Carlson, Semih Yavuz, Yu Zhang, Ian McGraw, Max Galkin, Qi Ge, Golan Pundak, Chad Whipkey, Todd Wang, Uri Alon, Dmitry Lepikhin, Ye Tian, Sara Sabour, William Chan, Shubham Toshniwal, Baohua Liao, Michael Nirschl, Pat Rondon

Figure 1 for Lingvo: a Modular and Scalable Framework for Sequence-to-Sequence Modeling
Figure 2 for Lingvo: a Modular and Scalable Framework for Sequence-to-Sequence Modeling
Figure 3 for Lingvo: a Modular and Scalable Framework for Sequence-to-Sequence Modeling

Lingvo is a Tensorflow framework offering a complete solution for collaborative deep learning research, with a particular focus towards sequence-to-sequence models. Lingvo models are composed of modular building blocks that are flexible and easily extensible, and experiment configurations are centralized and highly customizable. Distributed training and quantized inference are supported directly within the framework, and it contains existing implementations of a large number of utilities, helper functions, and the newest research ideas. Lingvo has been used in collaboration by dozens of researchers in more than 20 papers over the last two years. This document outlines the underlying design of Lingvo and serves as an introduction to the various pieces of the framework, while also offering examples of advanced features that showcase the capabilities of the framework.

Viaarxiv icon

Streaming End-to-end Speech Recognition For Mobile Devices

Nov 15, 2018
Yanzhang He, Tara N. Sainath, Rohit Prabhavalkar, Ian McGraw, Raziel Alvarez, Ding Zhao, David Rybach, Anjuli Kannan, Yonghui Wu, Ruoming Pang, Qiao Liang, Deepti Bhatia, Yuan Shangguan, Bo Li, Golan Pundak, Khe Chai Sim, Tom Bagby, Shuo-yiin Chang, Kanishka Rao, Alexander Gruenstein

Figure 1 for Streaming End-to-end Speech Recognition For Mobile Devices
Figure 2 for Streaming End-to-end Speech Recognition For Mobile Devices
Figure 3 for Streaming End-to-end Speech Recognition For Mobile Devices
Figure 4 for Streaming End-to-end Speech Recognition For Mobile Devices

End-to-end (E2E) models, which directly predict output character sequences given input speech, are good candidates for on-device speech recognition. E2E models, however, present numerous challenges: In order to be truly useful, such models must decode speech utterances in a streaming fashion, in real time; they must be robust to the long tail of use cases; they must be able to leverage user-specific context (e.g., contact lists); and above all, they must be extremely accurate. In this work, we describe our efforts at building an E2E speech recognizer using a recurrent neural network transducer. In experimental evaluations, we find that the proposed approach can outperform a conventional CTC-based model in terms of both latency and accuracy in a number of evaluation categories.

Viaarxiv icon

Contextual Speech Recognition with Difficult Negative Training Examples

Oct 29, 2018
Uri Alon, Golan Pundak, Tara N. Sainath

Figure 1 for Contextual Speech Recognition with Difficult Negative Training Examples
Figure 2 for Contextual Speech Recognition with Difficult Negative Training Examples
Figure 3 for Contextual Speech Recognition with Difficult Negative Training Examples
Figure 4 for Contextual Speech Recognition with Difficult Negative Training Examples

Improving the representation of contextual information is key to unlocking the potential of end-to-end (E2E) automatic speech recognition (ASR). In this work, we present a novel and simple approach for training an ASR context mechanism with difficult negative examples. The main idea is to focus on proper nouns (e.g., unique entities such as names of people and places) in the reference transcript, and use phonetically similar phrases as negative examples, encouraging the neural model to learn more discriminative representations. We apply our approach to an end-to-end contextual ASR model that jointly learns to transcribe and select the correct context items, and show that our proposed method gives up to $53.1\%$ relative improvement in word error rate (WER) across several benchmarks.

Viaarxiv icon

Toward domain-invariant speech recognition via large scale training

Aug 16, 2018
Arun Narayanan, Ananya Misra, Khe Chai Sim, Golan Pundak, Anshuman Tripathi, Mohamed Elfeky, Parisa Haghani, Trevor Strohman, Michiel Bacchiani

Figure 1 for Toward domain-invariant speech recognition via large scale training
Figure 2 for Toward domain-invariant speech recognition via large scale training
Figure 3 for Toward domain-invariant speech recognition via large scale training
Figure 4 for Toward domain-invariant speech recognition via large scale training

Current state-of-the-art automatic speech recognition systems are trained to work in specific `domains', defined based on factors like application, sampling rate and codec. When such recognizers are used in conditions that do not match the training domain, performance significantly drops. This work explores the idea of building a single domain-invariant model for varied use-cases by combining large scale training data from multiple application domains. Our final system is trained using 162,000 hours of speech. Additionally, each utterance is artificially distorted during training to simulate effects like background noise, codec distortion, and sampling rates. Our results show that, even at such a scale, a model thus trained works almost as well as those fine-tuned to specific subsets: A single model can be robust to multiple application domains, and variations like codecs and noise. More importantly, such models generalize better to unseen conditions and allow for rapid adaptation -- we show that by using as little as 10 hours of data from a new domain, an adapted domain-invariant model can match performance of a domain-specific model trained from scratch using 70 times as much data. We also highlight some of the limitations of such models and areas that need addressing in future work.

Viaarxiv icon