Picture for Yannick Kirchhoff

Yannick Kirchhoff

Skeleton Recall Loss for Connectivity Conserving and Resource Efficient Segmentation of Thin Tubular Structures

Add code
Apr 03, 2024
Figure 1 for Skeleton Recall Loss for Connectivity Conserving and Resource Efficient Segmentation of Thin Tubular Structures
Figure 2 for Skeleton Recall Loss for Connectivity Conserving and Resource Efficient Segmentation of Thin Tubular Structures
Figure 3 for Skeleton Recall Loss for Connectivity Conserving and Resource Efficient Segmentation of Thin Tubular Structures
Figure 4 for Skeleton Recall Loss for Connectivity Conserving and Resource Efficient Segmentation of Thin Tubular Structures
Viaarxiv icon

Benchmarking the CoW with the TopCoW Challenge: Topology-Aware Anatomical Segmentation of the Circle of Willis for CTA and MRA

Add code
Dec 29, 2023
Figure 1 for Benchmarking the CoW with the TopCoW Challenge: Topology-Aware Anatomical Segmentation of the Circle of Willis for CTA and MRA
Figure 2 for Benchmarking the CoW with the TopCoW Challenge: Topology-Aware Anatomical Segmentation of the Circle of Willis for CTA and MRA
Figure 3 for Benchmarking the CoW with the TopCoW Challenge: Topology-Aware Anatomical Segmentation of the Circle of Willis for CTA and MRA
Figure 4 for Benchmarking the CoW with the TopCoW Challenge: Topology-Aware Anatomical Segmentation of the Circle of Willis for CTA and MRA
Viaarxiv icon

atTRACTive: Semi-automatic white matter tract segmentation using active learning

Add code
May 31, 2023
Figure 1 for atTRACTive: Semi-automatic white matter tract segmentation using active learning
Figure 2 for atTRACTive: Semi-automatic white matter tract segmentation using active learning
Figure 3 for atTRACTive: Semi-automatic white matter tract segmentation using active learning
Figure 4 for atTRACTive: Semi-automatic white matter tract segmentation using active learning
Viaarxiv icon