Abstract:In the character animation field, modern supervised keyframe interpolation models have demonstrated exceptional performance in constructing natural human motions from sparse pose definitions. As supervised models, large motion datasets are necessary to facilitate the learning process; however, since motion is represented with fixed hierarchical skeletons, such datasets are incompatible for skeletons outside the datasets' native configurations. Consequently, the expected availability of a motion dataset for desired skeletons severely hinders the feasibility of learned interpolation in practice. To combat this limitation, we propose Point Cloud-based Motion Representation Learning (PC-MRL), an unsupervised approach to enabling cross-compatibility between skeletons for motion interpolation learning. PC-MRL consists of a skeleton obfuscation strategy using temporal point cloud sampling, and an unsupervised skeleton reconstruction method from point clouds. We devise a temporal point-wise K-nearest neighbors loss for unsupervised learning. Moreover, we propose First-frame Offset Quaternion (FOQ) and Rest Pose Augmentation (RPA) strategies to overcome necessary limitations of our unsupervised point cloud-to-skeletal motion process. Comprehensive experiments demonstrate the effectiveness of PC-MRL in motion interpolation for desired skeletons without supervision from native datasets.
Abstract:We tackle the problem of single-image Human Mesh Recovery (HMR). Previous approaches are mostly based on a single crop. In this paper, we shift the single-crop HMR to a novel multiple-crop HMR paradigm. Cropping a human from image multiple times by shifting and scaling the original bounding box is feasible in practice, easy to implement, and incurs neglectable cost, but immediately enriches available visual details. With multiple crops as input, we manage to leverage the relation among these crops to extract discriminative features and reduce camera ambiguity. Specifically, (1) we incorporate a contrastive learning scheme to enhance the similarity between features extracted from crops of the same human. (2) We also propose a crop-aware fusion scheme to fuse the features of multiple crops for regressing the target mesh. (3) We compute local cameras for all the input crops and build a camera-consistency loss between the local cameras, which reward us with less ambiguous cameras. Based on the above innovations, our proposed method outperforms previous approaches as demonstrated by the extensive experiments.
Abstract:We propose a novel optimization-based human mesh recovery method from a single image. Given a test exemplar, previous approaches optimize the pre-trained regression network to minimize the 2D re-projection loss, which however suffer from over-/under-fitting problems. This is because the ``exemplar optimization'' at testing time has too weak relation to the pre-training process, and the exemplar optimization loss function is different from the training loss function. (1) We incorporate exemplar optimization into the training stage. During training, our method first executes exemplar optimization and subsequently proceeds with training-time optimization. The exemplar optimization may run into a wrong direction, while the subsequent training optimization serves to correct the deviation. Involved in training, the exemplar optimization learns to adapt its behavior to training data, thereby acquires generalibility to test exemplars. (2) We devise a dual-network architecture to convey the novel training paradigm, which is composed of a main regression network and an auxiliary network, in which we can formulate the exemplar optimization loss function in the same form as the training loss function. This further enhances the compatibility between the exemplar and training optimizations. Experiments demonstrate that our exemplar optimization after the novel training scheme significantly outperforms state-of-the-art approaches.
Abstract:Without human annotations, a typical Unsupervised Video Anomaly Detection (UVAD) method needs to train two models that generate pseudo labels for each other. In previous work, the two models are closely entangled with each other, and it is not known how to upgrade their method without modifying their training framework significantly. Second, previous work usually adopts fixed thresholding to obtain pseudo labels, however the user-specified threshold is not reliable which inevitably introduces errors into the training process. To alleviate these two problems, we propose a novel interleaved framework that alternately trains a One-Class Classification (OCC) model and a Weakly-Supervised (WS) model for UVAD. The OCC or WS models in our method can be easily replaced with other OCC or WS models, which facilitates our method to upgrade with the most recent developments in both fields. For handling the fixed thresholding problem, we break through the conventional cognitive boundary and propose a weighted OCC model that can be trained on both normal and abnormal data. We also propose an adaptive mechanism for automatically finding the optimal threshold for the WS model in a loose to strict manner. Experiments demonstrate that the proposed UVAD method outperforms previous approaches.
Abstract:In this paper, we propose a novel framework named DRL-CPG to learn disentangled latent representation for controllable person image generation, which can produce realistic person images with desired poses and human attributes (e.g., pose, head, upper clothes, and pants) provided by various source persons. Unlike the existing works leveraging the semantic masks to obtain the representation of each component, we propose to generate disentangled latent code via a novel attribute encoder with transformers trained in a manner of curriculum learning from a relatively easy step to a gradually hard one. A random component mask-agnostic strategy is introduced to randomly remove component masks from the person segmentation masks, which aims at increasing the difficulty of training and promoting the transformer encoder to recognize the underlying boundaries between each component. This enables the model to transfer both the shape and texture of the components. Furthermore, we propose a novel attribute decoder network to integrate multi-level attributes (e.g., the structure feature and the attribute representation) with well-designed Dual Adaptive Denormalization (DAD) residual blocks. Extensive experiments strongly demonstrate that the proposed approach is able to transfer both the texture and shape of different human parts and yield realistic results. To our knowledge, we are the first to learn disentangled latent representations with transformers for person image generation.
Abstract:Arbitrary style transfer has been demonstrated to be efficient in artistic image generation. Previous methods either globally modulate the content feature ignoring local details, or overly focus on the local structure details leading to style leakage. In contrast to the literature, we propose a new scheme \textit{``style kernel"} that learns {\em spatially adaptive kernels} for per-pixel stylization, where the convolutional kernels are dynamically generated from the global style-content aligned feature and then the learned kernels are applied to modulate the content feature at each spatial position. This new scheme allows flexible both global and local interactions between the content and style features such that the wanted styles can be easily transferred to the content image while at the same time the content structure can be easily preserved. To further enhance the flexibility of our style transfer method, we propose a Style Alignment Encoding (SAE) module complemented with a Content-based Gating Modulation (CGM) module for learning the dynamic style kernels in focusing regions. Extensive experiments strongly demonstrate that our proposed method outperforms state-of-the-art methods and exhibits superior performance in terms of visual quality and efficiency.
Abstract:Micro-expressions are spontaneous, rapid and subtle facial movements that can neither be forged nor suppressed. They are very important nonverbal communication clues, but are transient and of low intensity thus difficult to recognize. Recently deep learning based methods have been developed for micro-expression (ME) recognition using feature extraction and fusion techniques, however, targeted feature learning and efficient feature fusion still lack further study according to the ME characteristics. To address these issues, we propose a novel framework Feature Representation Learning with adaptive Displacement Generation and Transformer fusion (FRL-DGT), in which a convolutional Displacement Generation Module (DGM) with self-supervised learning is used to extract dynamic features from onset/apex frames targeted to the subsequent ME recognition task, and a well-designed Transformer Fusion mechanism composed of three Transformer-based fusion modules (local, global fusions based on AU regions and full-face fusion) is applied to extract the multi-level informative features after DGM for the final ME prediction. The extensive experiments with solid leave-one-subject-out (LOSO) evaluation results have demonstrated the superiority of our proposed FRL-DGT to state-of-the-art methods.
Abstract:Deriving sophisticated 3D motions from sparse keyframes is a particularly challenging problem, due to continuity and exceptionally skeletal precision. The action features are often derivable accurately from the full series of keyframes, and thus, leveraging the global context with transformers has been a promising data-driven embedding approach. However, existing methods are often with inputs of interpolated intermediate frame for continuity using basic interpolation methods with keyframes, which result in a trivial local minimum during training. In this paper, we propose a novel framework to formulate latent motion manifolds with keyframe-based constraints, from which the continuous nature of intermediate token representations is considered. Particularly, our proposed framework consists of two stages for identifying a latent motion subspace, i.e., a keyframe encoding stage and an intermediate token generation stage, and a subsequent motion synthesis stage to extrapolate and compose motion data from manifolds. Through our extensive experiments conducted on both the LaFAN1 and CMU Mocap datasets, our proposed method demonstrates both superior interpolation accuracy and high visual similarity to ground truth motions.
Abstract:3D scene graph generation (SGG) has been of high interest in computer vision. Although the accuracy of 3D SGG on coarse classification and single relation label has been gradually improved, the performance of existing works is still far from being perfect for fine-grained and multi-label situations. In this paper, we propose a framework fully exploring contextual information for the 3D SGG task, which attempts to satisfy the requirements of fine-grained entity class, multiple relation labels, and high accuracy simultaneously. Our proposed approach is composed of a Graph Feature Extraction module and a Graph Contextual Reasoning module, achieving appropriate information-redundancy feature extraction, structured organization, and hierarchical inferring. Our approach achieves superior or competitive performance over previous methods on the 3DSSG dataset, especially on the relationship prediction sub-task.
Abstract:Diverse human motion prediction aims at predicting multiple possible future pose sequences from a sequence of observed poses. Previous approaches usually employ deep generative networks to model the conditional distribution of data, and then randomly sample outcomes from the distribution. While different results can be obtained, they are usually the most likely ones which are not diverse enough. Recent work explicitly learns multiple modes of the conditional distribution via a deterministic network, which however can only cover a fixed number of modes within a limited range. In this paper, we propose a novel sampling strategy for sampling very diverse results from an imbalanced multimodal distribution learned by a deep generative model. Our method works by generating an auxiliary space and smartly making randomly sampling from the auxiliary space equivalent to the diverse sampling from the target distribution. We propose a simple yet effective network architecture that implements this novel sampling strategy, which incorporates a Gumbel-Softmax coefficient matrix sampling method and an aggressive diversity promoting hinge loss function. Extensive experiments demonstrate that our method significantly improves both the diversity and accuracy of the samplings compared with previous state-of-the-art sampling approaches. Code and pre-trained models are available at https://github.com/Droliven/diverse_sampling.