Class activation mapping~(CAM), a visualization technique for interpreting deep learning models, is now commonly used for weakly supervised semantic segmentation~(WSSS) and object localization~(WSOL). It is the weighted aggregation of the feature maps by activating the high class-relevance ones. Current CAM methods achieve it relying on the training outcomes, such as predicted scores~(forward information), gradients~(backward information), etc. However, when with small-scale data, unstable training may lead to less effective model outcomes and generate unreliable weights, finally resulting in incorrect activation and noisy CAM seeds. In this paper, we propose an outcome-agnostic CAM approach, called BroadCAM, for small-scale weakly supervised applications. Since broad learning system (BLS) is independent to the model learning, BroadCAM can avoid the weights being affected by the unreliable model outcomes when with small-scale data. By evaluating BroadCAM on VOC2012 (natural images) and BCSS-WSSS (medical images) for WSSS and OpenImages30k for WSOL, BroadCAM demonstrates superior performance than existing CAM methods with small-scale data (less than 5\%) in different CNN architectures. It also achieves SOTA performance with large-scale training data. Extensive qualitative comparisons are conducted to demonstrate how BroadCAM activates the high class-relevance feature maps and generates reliable CAMs when with small-scale training data.
Previous Knowledge Distillation based efficient image retrieval methods employs a lightweight network as the student model for fast inference. However, the lightweight student model lacks adequate representation capacity for effective knowledge imitation during the most critical early training period, causing final performance degeneration. To tackle this issue, we propose a Capacity Dynamic Distillation framework, which constructs a student model with editable representation capacity. Specifically, the employed student model is initially a heavy model to fruitfully learn distilled knowledge in the early training epochs, and the student model is gradually compressed during the training. To dynamically adjust the model capacity, our dynamic framework inserts a learnable convolutional layer within each residual block in the student model as the channel importance indicator. The indicator is optimized simultaneously by the image retrieval loss and the compression loss, and a retrieval-guided gradient resetting mechanism is proposed to release the gradient conflict. Extensive experiments show that our method has superior inference speed and accuracy, e.g., on the VeRi-776 dataset, given the ResNet101 as a teacher, our method saves 67.13% model parameters and 65.67% FLOPs (around 24.13% and 21.94% higher than state-of-the-arts) without sacrificing accuracy (around 2.11% mAP higher than state-of-the-arts).
Existing GAN inversion methods are stuck in a paradox that the inverted codes can either achieve high-fidelity reconstruction, or retain the editing capability. Having only one of them clearly cannot realize real image editing. In this paper, we resolve this paradox by introducing consecutive images (\eg, video frames or the same person with different poses) into the inversion process. The rationale behind our solution is that the continuity of consecutive images leads to inherent editable directions. This inborn property is used for two unique purposes: 1) regularizing the joint inversion process, such that each of the inverted code is semantically accessible from one of the other and fastened in a editable domain; 2) enforcing inter-image coherence, such that the fidelity of each inverted code can be maximized with the complement of other images. Extensive experiments demonstrate that our alternative significantly outperforms state-of-the-art methods in terms of reconstruction fidelity and editability on both the real image dataset and synthesis dataset. Furthermore, our method provides the first support of video-based GAN inversion, and an interesting application of unsupervised semantic transfer from consecutive images. Source code can be found at: \url{https://github.com/cnnlstm/InvertingGANs_with_ConsecutiveImgs}.
Camouflaged object detection is a challenging task that aims to identify objects having similar texture to the surroundings. This paper presents to amplify the subtle texture difference between camouflaged objects and the background for camouflaged object detection by formulating multiple texture-aware refinement modules to learn the texture-aware features in a deep convolutional neural network. The texture-aware refinement module computes the covariance matrices of feature responses to extract the texture information, designs an affinity loss to learn a set of parameter maps that help to separate the texture between camouflaged objects and the background, and adopts a boundary-consistency loss to explore the object detail structures.We evaluate our network on the benchmark dataset for camouflaged object detection both qualitatively and quantitatively. Experimental results show that our approach outperforms various state-of-the-art methods by a large margin.
Temporal repetition counting aims to estimate the number of cycles of a given repetitive action. Existing deep learning methods assume repetitive actions are performed in a fixed time-scale, which is invalid for the complex repetitive actions in real life. In this paper, we tailor a context-aware and scale-insensitive framework, to tackle the challenges in repetition counting caused by the unknown and diverse cycle-lengths. Our approach combines two key insights: (1) Cycle lengths from different actions are unpredictable that require large-scale searching, but, once a coarse cycle length is determined, the variety between repetitions can be overcome by regression. (2) Determining the cycle length cannot only rely on a short fragment of video but a contextual understanding. The first point is implemented by a coarse-to-fine cycle refinement method. It avoids the heavy computation of exhaustively searching all the cycle lengths in the video, and, instead, it propagates the coarse prediction for further refinement in a hierarchical manner. We secondly propose a bidirectional cycle length estimation method for a context-aware prediction. It is a regression network that takes two consecutive coarse cycles as input, and predicts the locations of the previous and next repetitive cycles. To benefit the training and evaluation of temporal repetition counting area, we construct a new and largest benchmark, which contains 526 videos with diverse repetitive actions. Extensive experiments show that the proposed network trained on a single dataset outperforms state-of-the-art methods on several benchmarks, indicating that the proposed framework is general enough to capture repetition patterns across domains.
Vision-based vehicle detection approaches achieve incredible success in recent years with the development of deep convolutional neural network (CNN). However, existing CNN based algorithms suffer from the problem that the convolutional features are scale-sensitive in object detection task but it is common that traffic images and videos contain vehicles with a large variance of scales. In this paper, we delve into the source of scale sensitivity, and reveal two key issues: 1) existing RoI pooling destroys the structure of small scale objects, 2) the large intra-class distance for a large variance of scales exceeds the representation capability of a single network. Based on these findings, we present a scale-insensitive convolutional neural network (SINet) for fast detecting vehicles with a large variance of scales. First, we present a context-aware RoI pooling to maintain the contextual information and original structure of small scale objects. Second, we present a multi-branch decision network to minimize the intra-class distance of features. These lightweight techniques bring zero extra time complexity but prominent detection accuracy improvement. The proposed techniques can be equipped with any deep network architectures and keep them trained end-to-end. Our SINet achieves state-of-the-art performance in terms of accuracy and speed (up to 37 FPS) on the KITTI benchmark and a new highway dataset, which contains a large variance of scales and extremely small objects.