Abstract:Large language model (LLM)-based embedding models, benefiting from large scale pre-training and post-training, have begun to surpass BERT and T5-based models on general-purpose text embedding tasks such as document retrieval. However, a fundamental limitation of LLM embeddings lies in the unidirectional attention used during autoregressive pre-training, which misaligns with the bidirectional nature of text embedding tasks. To this end, We propose adopting diffusion language models for text embeddings, motivated by their inherent bidirectional architecture and recent success in matching or surpassing LLMs especially on reasoning tasks. We present the first systematic study of the diffusion language embedding model, which outperforms the LLM-based embedding model by 20% on long-document retrieval, 8% on reasoning-intensive retrieval, 2% on instruction-following retrieval, and achieve competitive performance on traditional text embedding benchmarks. Our analysis verifies that bidirectional attention is crucial for encoding global context in long and complex text.
Abstract:This paper explores the capability of ViT-based models under the generalized few-shot semantic segmentation (GFSS) framework. We conduct experiments with various combinations of backbone models, including ResNets and pretrained Vision Transformer (ViT)-based models, along with decoders featuring a linear classifier, UPerNet, and Mask Transformer. The structure made of DINOv2 and linear classifier takes the lead on popular few-shot segmentation bench mark PASCAL-$5^i$, substantially outperforming the best of ResNet structure by 116% in one-shot scenario. We demonstrate the great potential of large pretrained ViT-based model on GFSS task, and expect further improvement on testing benchmarks. However, a potential caveat is that when applying pure ViT-based model and large scale ViT decoder, the model is easy to overfit.