Fairness is an increasingly important factor in re-ranking tasks. Prior work has identified a trade-off between ranking accuracy and item fairness. However, the underlying mechanisms are still not fully understood. An analogy can be drawn between re-ranking and the dynamics of economic transactions. The accuracy-fairness trade-off parallels the coupling of the commodity tax transfer process. Fairness considerations in re-ranking, similar to a commodity tax on suppliers, ultimately translate into a cost passed on to consumers. Analogously, item-side fairness constraints result in a decline in user-side accuracy. In economics, the extent to which commodity tax on the supplier (item fairness) transfers to commodity tax on users (accuracy loss) is formalized using the notion of elasticity. The re-ranking fairness-accuracy trade-off is similarly governed by the elasticity of utility between item groups. This insight underscores the limitations of current fair re-ranking evaluations, which often rely solely on a single fairness metric, hindering comprehensive assessment of fair re-ranking algorithms. Centered around the concept of elasticity, this work presents two significant contributions. We introduce the Elastic Fairness Curve (EF-Curve) as an evaluation framework. This framework enables a comparative analysis of algorithm performance across different elasticity levels, facilitating the selection of the most suitable approach. Furthermore, we propose ElasticRank, a fair re-ranking algorithm that employs elasticity calculations to adjust inter-item distances within a curved space. Experiments on three widely used ranking datasets demonstrate its effectiveness and efficiency.