Abstract:Recent advances in video generation demand increasingly efficient training recipes to mitigate escalating computational costs. In this report, we present ContentV, an 8B-parameter text-to-video model that achieves state-of-the-art performance (85.14 on VBench) after training on 256 x 64GB Neural Processing Units (NPUs) for merely four weeks. ContentV generates diverse, high-quality videos across multiple resolutions and durations from text prompts, enabled by three key innovations: (1) A minimalist architecture that maximizes reuse of pre-trained image generation models for video generation; (2) A systematic multi-stage training strategy leveraging flow matching for enhanced efficiency; and (3) A cost-effective reinforcement learning with human feedback framework that improves generation quality without requiring additional human annotations. All the code and models are available at: https://contentv.github.io.
Abstract:Effectively managing missing modalities is a fundamental challenge in real-world multimodal learning scenarios, where data incompleteness often results from systematic collection errors or sensor failures. Sparse Mixture-of-Experts (SMoE) architectures have the potential to naturally handle multimodal data, with individual experts specializing in different modalities. However, existing SMoE approach often lacks proper ability to handle missing modality, leading to performance degradation and poor generalization in real-world applications. We propose Conf-SMoE to introduce a two-stage imputation module to handle the missing modality problem for the SMoE architecture and reveal the insight of expert collapse from theoretical analysis with strong empirical evidence. Inspired by our theoretical analysis, Conf-SMoE propose a novel expert gating mechanism by detaching the softmax routing score to task confidence score w.r.t ground truth. This naturally relieves expert collapse without introducing additional load balance loss function. We show that the insights of expert collapse aligns with other gating mechanism such as Gaussian and Laplacian gate. We also evaluate the proposed method on four different real world dataset with three different experiment settings to conduct comprehensive the analysis of Conf-SMoE on modality fusion and resistance to missing modality.
Abstract:Aligning text-to-image (T2I) diffusion models with Direct Preference Optimization (DPO) has shown notable improvements in generation quality. However, applying DPO to T2I faces two challenges: the sensitivity of DPO to preference pairs and the labor-intensive process of collecting and annotating high-quality data. In this work, we demonstrate that preference pairs with marginal differences can degrade DPO performance. Since DPO relies exclusively on relative ranking while disregarding the absolute difference of pairs, it may misclassify losing samples as wins, or vice versa. We empirically show that extending the DPO from pairwise to groupwise and incorporating reward standardization for reweighting leads to performance gains without explicit data selection. Furthermore, we propose Group Preference Optimization (GPO), an effective self-improvement method that enhances performance by leveraging the model's own capabilities without requiring external data. Extensive experiments demonstrate that GPO is effective across various diffusion models and tasks. Specifically, combining with widely used computer vision models, such as YOLO and OCR, the GPO improves the accurate counting and text rendering capabilities of the Stable Diffusion 3.5 Medium by 20 percentage points. Notably, as a plug-and-play method, no extra overhead is introduced during inference.
Abstract:Security vulnerabilities in Windows Active Directory (AD) systems are typically modeled using an attack graph and hardening AD systems involves an iterative workflow: security teams propose an edge to remove, and IT operations teams manually review these fixes before implementing the removal. As verification requires significant manual effort, we formulate an Adaptive Path Removal Problem to minimize the number of steps in this iterative removal process. In our model, a wizard proposes an attack path in each step and presents it as a set of multiple-choice options to the IT admin. The IT admin then selects one edge from the proposed set to remove. This process continues until the target $t$ is disconnected from source $s$ or the number of proposed paths reaches $B$. The model aims to optimize the human effort by minimizing the expected number of interactions between the IT admin and the security wizard. We first prove that the problem is $\mathcal{\#P}$-hard. We then propose a set of solutions including an exact algorithm, an approximate algorithm, and several scalable heuristics. Our best heuristic, called DPR, can operate effectively on larger-scale graphs compared to the exact algorithm and consistently outperforms the approximate algorithm across all graphs. We verify the effectiveness of our algorithms on several synthetic AD graphs and an AD attack graph collected from a real organization.
Abstract:Recently, with the tremendous success of diffusion models in the field of text-to-image (T2I) generation, increasing attention has been directed toward their potential in text-to-video (T2V) applications. However, the computational demands of diffusion models pose significant challenges, particularly in generating high-resolution videos with high frame rates. In this paper, we propose CascadeV, a cascaded latent diffusion model (LDM), that is capable of producing state-of-the-art 2K resolution videos. Experiments demonstrate that our cascaded model achieves a higher compression ratio, substantially reducing the computational challenges associated with high-quality video generation. We also implement a spatiotemporal alternating grid 3D attention mechanism, which effectively integrates spatial and temporal information, ensuring superior consistency across the generated video frames. Furthermore, our model can be cascaded with existing T2V models, theoretically enabling a 4$\times$ increase in resolution or frames per second without any fine-tuning. Our code is available at https://github.com/bytedance/CascadeV.
Abstract:This paper addresses a significant gap in Autonomous Cyber Operations (ACO) literature: the absence of effective edge-blocking ACO strategies in dynamic, real-world networks. It specifically targets the cybersecurity vulnerabilities of organizational Active Directory (AD) systems. Unlike the existing literature on edge-blocking defenses which considers AD systems as static entities, our study counters this by recognizing their dynamic nature and developing advanced edge-blocking defenses through a Stackelberg game model between attacker and defender. We devise a Reinforcement Learning (RL)-based attack strategy and an RL-assisted Evolutionary Diversity Optimization-based defense strategy, where the attacker and defender improve each other strategy via parallel gameplay. To address the computational challenges of training attacker-defender strategies on numerous dynamic AD graphs, we propose an RL Training Facilitator that prunes environments and neural networks to eliminate irrelevant elements, enabling efficient and scalable training for large graphs. We extensively train the attacker strategy, as a sophisticated attacker model is essential for a robust defense. Our empirical results successfully demonstrate that our proposed approach enhances defender's proficiency in hardening dynamic AD graphs while ensuring scalability for large-scale AD.
Abstract:Microsoft Active Directory (AD) is the default security management system for Window domain network. We study the problem of placing decoys in AD network to detect potential attacks. We model the problem as a Stackelberg game between an attacker and a defender on AD attack graphs where the defender employs a set of decoys to detect the attacker on their way to Domain Admin (DA). Contrary to previous works, we consider time-varying (temporal) attack graphs. We proposed a novel metric called response time, to measure the effectiveness of our decoy placement in temporal attack graphs. Response time is defined as the duration from the moment attackers trigger the first decoy to when they compromise the DA. Our goal is to maximize the defender's response time to the worst-case attack paths. We establish the NP-hard nature of the defender's optimization problem, leading us to develop Evolutionary Diversity Optimization (EDO) algorithms. EDO algorithms identify diverse sets of high-quality solutions for the optimization problem. Despite the polynomial nature of the fitness function, it proves experimentally slow for larger graphs. To enhance scalability, we proposed an algorithm that exploits the static nature of AD infrastructure in the temporal setting. Then, we introduce tailored repair operations, ensuring the convergence to better results while maintaining scalability for larger graphs.
Abstract:In many collaborative settings, artificial intelligence (AI) agents must be able to adapt to new teammates that use unknown or previously unobserved strategies. While often simple for humans, this can be challenging for AI agents. For example, if an AI agent learns to drive alongside others (a training set) that only drive on one side of the road, it may struggle to adapt this experience to coordinate with drivers on the opposite side, even if their behaviours are simply flipped along the left-right symmetry. To address this we introduce symmetry-breaking augmentations (SBA), which increases diversity in the behaviour of training teammates by applying a symmetry-flipping operation. By learning a best-response to the augmented set of teammates, our agent is exposed to a wider range of behavioural conventions, improving performance when deployed with novel teammates. We demonstrate this experimentally in two settings, and show that our approach improves upon previous ad hoc teamwork results in the challenging card game Hanabi. We also propose a general metric for estimating symmetry-dependency amongst a given set of policies.
Abstract:Creating diverse sets of high quality solutions has become an important problem in recent years. Previous works on diverse solutions problems consider solutions' objective quality and diversity where one is regarded as the optimization goal and the other as the constraint. In this paper, we treat this problem as a bi-objective optimization problem, which is to obtain a range of quality-diversity trade-offs. To address this problem, we frame the evolutionary process as evolving a population of populations, and present a suitable general implementation scheme that is compatible with existing evolutionary multi-objective search methods. We realize the scheme in NSGA-II and SPEA2, and test the methods on various instances of maximum coverage, maximum cut and minimum vertex cover problems. The resulting non-dominated populations exhibit rich qualitative features, giving insights into the optimization instances and the quality-diversity trade-offs they induce.
Abstract:We study a Stackelberg game between an attacker and a defender on large Active Directory (AD) attack graphs where the defender employs a set of honeypots to stop the attacker from reaching high-value targets. Contrary to existing works that focus on small and static attack graphs, AD graphs typically contain hundreds of thousands of nodes and edges and constantly change over time. We consider two types of attackers: a simple attacker who cannot observe honeypots and a competent attacker who can. To jointly solve the game, we propose a mixed-integer programming (MIP) formulation. We observed that the optimal blocking plan for static graphs performs poorly in dynamic graphs. To solve the dynamic graph problem, we re-design the mixed-integer programming formulation by combining m MIP (dyMIP(m)) instances to produce a near-optimal blocking plan. Furthermore, to handle a large number of dynamic graph instances, we use a clustering algorithm to efficiently find the m-most representative graph instances for a constant m (dyMIP(m)). We prove a lower bound on the optimal blocking strategy for dynamic graphs and show that our dyMIP(m) algorithms produce close to optimal results for a range of AD graphs under realistic conditions.