Abstract:A compelling use case of offline reinforcement learning (RL) is to obtain a policy initialization from existing datasets, which allows efficient fine-tuning with limited amounts of active online interaction. However, several existing offline RL methods tend to exhibit poor online fine-tuning performance. On the other hand, online RL methods can learn effectively through online interaction, but struggle to incorporate offline data, which can make them very slow in settings where exploration is challenging or pre-training is necessary. In this paper, we devise an approach for learning an effective initialization from offline data that also enables fast online fine-tuning capabilities. Our approach, calibrated Q-learning (Cal-QL) accomplishes this by learning a conservative value function initialization that underestimates the value of the learned policy from offline data, while also being calibrated, in the sense that the learned Q-values are at a reasonable scale. We refer to this property as calibration, and define it formally as providing a lower bound on the true value function of the learned policy and an upper bound on the value of some other (suboptimal) reference policy, which may simply be the behavior policy. We show that offline RL algorithms that learn such calibrated value functions lead to effective online fine-tuning, enabling us to take the benefits of offline initializations in online fine-tuning. In practice, Cal-QL can be implemented on top of existing conservative methods for offline RL within a one-line code change. Empirically, Cal-QL outperforms state-of-the-art methods on 10/11 fine-tuning benchmark tasks that we study in this paper.
Abstract:Offline reinforcement learning (RL) promises the ability to learn effective policies solely using existing, static datasets, without any costly online interaction. To do so, offline RL methods must handle distributional shift between the dataset and the learned policy. The most common approach is to learn conservative, or lower-bound, value functions, which underestimate the return of out-of-distribution (OOD) actions. However, such methods exhibit one notable drawback: policies optimized on such value functions can only behave according to a fixed, possibly suboptimal, degree of conservatism. However, this can be alleviated if we instead are able to learn policies for varying degrees of conservatism at training time and devise a method to dynamically choose one of them during evaluation. To do so, in this work, we propose learning value functions that additionally condition on the degree of conservatism, which we dub confidence-conditioned value functions. We derive a new form of a Bellman backup that simultaneously learns Q-values for any degree of confidence with high probability. By conditioning on confidence, our value functions enable adaptive strategies during online evaluation by controlling for confidence level using the history of observations thus far. This approach can be implemented in practice by conditioning the Q-function from existing conservative algorithms on the confidence. We theoretically show that our learned value functions produce conservative estimates of the true value at any desired confidence. Finally, we empirically show that our algorithm outperforms existing conservative offline RL algorithms on multiple discrete control domains.
Abstract:The potential of offline reinforcement learning (RL) is that high-capacity models trained on large, heterogeneous datasets can lead to agents that generalize broadly, analogously to similar advances in vision and NLP. However, recent works argue that offline RL methods encounter unique challenges to scaling up model capacity. Drawing on the learnings from these works, we re-examine previous design choices and find that with appropriate choices: ResNets, cross-entropy based distributional backups, and feature normalization, offline Q-learning algorithms exhibit strong performance that scales with model capacity. Using multi-task Atari as a testbed for scaling and generalization, we train a single policy on 40 games with near-human performance using up-to 80 million parameter networks, finding that model performance scales favorably with capacity. In contrast to prior work, we extrapolate beyond dataset performance even when trained entirely on a large (400M transitions) but highly suboptimal dataset (51% human-level performance). Compared to return-conditioned supervised approaches, offline Q-learning scales similarly with model capacity and has better performance, especially when the dataset is suboptimal. Finally, we show that offline Q-learning with a diverse dataset is sufficient to learn powerful representations that facilitate rapid transfer to novel games and fast online learning on new variations of a training game, improving over existing state-of-the-art representation learning approaches.
Abstract:The goal in offline data-driven decision-making is synthesize decisions that optimize a black-box utility function, using a previously-collected static dataset, with no active interaction. These problems appear in many forms: offline reinforcement learning (RL), where we must produce actions that optimize the long-term reward, bandits from logged data, where the goal is to determine the correct arm, and offline model-based optimization (MBO) problems, where we must find the optimal design provided access to only a static dataset. A key challenge in all these settings is distributional shift: when we optimize with respect to the input into a model trained from offline data, it is easy to produce an out-of-distribution (OOD) input that appears erroneously good. In contrast to prior approaches that utilize pessimism or conservatism to tackle this problem, in this paper, we formulate offline data-driven decision-making as domain adaptation, where the goal is to make accurate predictions for the value of optimized decisions ("target domain"), when training only on the dataset ("source domain"). This perspective leads to invariant objective models (IOM), our approach for addressing distributional shift by enforcing invariance between the learned representations of the training dataset and optimized decisions. In IOM, if the optimized decisions are too different from the training dataset, the representation will be forced to lose much of the information that distinguishes good designs from bad ones, making all choices seem mediocre. Critically, when the optimizer is aware of this representational tradeoff, it should choose not to stray too far from the training distribution, leading to a natural trade-off between distributional shift and learning performance.
Abstract:Offline reinforcement learning (RL) learns policies entirely from static datasets, thereby avoiding the challenges associated with online data collection. Practical applications of offline RL will inevitably require learning from datasets where the variability of demonstrated behaviors changes non-uniformly across the state space. For example, at a red light, nearly all human drivers behave similarly by stopping, but when merging onto a highway, some drivers merge quickly, efficiently, and safely, while many hesitate or merge dangerously. Both theoretically and empirically, we show that typical offline RL methods, which are based on distribution constraints fail to learn from data with such non-uniform variability, due to the requirement to stay close to the behavior policy to the same extent across the state space. Ideally, the learned policy should be free to choose per state how closely to follow the behavior policy to maximize long-term return, as long as the learned policy stays within the support of the behavior policy. To instantiate this principle, we reweight the data distribution in conservative Q-learning (CQL) to obtain an approximate support constraint formulation. The reweighted distribution is a mixture of the current policy and an additional policy trained to mine poor actions that are likely under the behavior policy. Our method, CQL (ReDS), is simple, theoretically motivated, and improves performance across a wide range of offline RL problems in Atari games, navigation, and pixel-based manipulation.
Abstract:In offline RL, constraining the learned policy to remain close to the data is essential to prevent the policy from outputting out-of-distribution (OOD) actions with erroneously overestimated values. In principle, generative adversarial networks (GAN) can provide an elegant solution to do so, with the discriminator directly providing a probability that quantifies distributional shift. However, in practice, GAN-based offline RL methods have not performed as well as alternative approaches, perhaps because the generator is trained to both fool the discriminator and maximize return -- two objectives that can be at odds with each other. In this paper, we show that the issue of conflicting objectives can be resolved by training two generators: one that maximizes return, with the other capturing the ``remainder'' of the data distribution in the offline dataset, such that the mixture of the two is close to the behavior policy. We show that not only does having two generators enable an effective GAN-based offline RL method, but also approximates a support constraint, where the policy does not need to match the entire data distribution, but only the slice of the data that leads to high long term performance. We name our method DASCO, for Dual-Generator Adversarial Support Constrained Offline RL. On benchmark tasks that require learning from sub-optimal data, DASCO significantly outperforms prior methods that enforce distribution constraint.
Abstract:Recent progress in deep learning highlights the tremendous potential of utilizing diverse datasets for achieving effective generalization and makes it enticing to consider leveraging broad datasets for attaining more robust generalization in robotic learning as well. However, in practice we likely will want to learn a new skill in a new environment that is unlikely to be contained in the prior data. Therefore we ask: how can we leverage existing diverse offline datasets in combination with small amounts of task-specific data to solve new tasks, while still enjoying the generalization benefits of training on large amounts of data? In this paper, we demonstrate that end-to-end offline RL can be an effective approach for doing this, without the need for any representation learning or vision-based pre-training. We present pre-training for robots (PTR), a framework based on offline RL that attempts to effectively learn new tasks by combining pre-training on existing robotic datasets with rapid fine-tuning on a new task, with as a few as 10 demonstrations. At its core, PTR applies an existing offline RL method such as conservative Q-learning (CQL), but extends it to include several crucial design decisions that enable PTR to actually work and outperform a variety of prior methods. To the best of our knowledge, PTR is the first offline RL method that succeeds at learning new tasks in a new domain on a real WidowX robot with as few as 10 task demonstrations, by effectively leveraging an existing dataset of diverse multi-task robot data collected in a variety of toy kitchens. Our implementation can be found at: https://github.com/Asap7772/PTR.
Abstract:Reinforcement learning (RL) algorithms hold the promise of enabling autonomous skill acquisition for robotic systems. However, in practice, real-world robotic RL typically requires time consuming data collection and frequent human intervention to reset the environment. Moreover, robotic policies learned with RL often fail when deployed beyond the carefully controlled setting in which they were learned. In this work, we study how these challenges can all be tackled by effective utilization of diverse offline datasets collected from previously seen tasks. When faced with a new task, our system adapts previously learned skills to quickly learn to both perform the new task and return the environment to an initial state, effectively performing its own environment reset. Our empirical results demonstrate that incorporating prior data into robotic reinforcement learning enables autonomous learning, substantially improves sample-efficiency of learning, and enables better generalization. Project website: https://sites.google.com/view/ariel-berkeley/
Abstract:Offline reinforcement learning (RL) algorithms can acquire effective policies by utilizing previously collected experience, without any online interaction. It is widely understood that offline RL is able to extract good policies even from highly suboptimal data, a scenario where imitation learning finds suboptimal solutions that do not improve over the demonstrator that generated the dataset. However, another common use case for practitioners is to learn from data that resembles demonstrations. In this case, one can choose to apply offline RL, but can also use behavioral cloning (BC) algorithms, which mimic a subset of the dataset via supervised learning. Therefore, it seems natural to ask: when can an offline RL method outperform BC with an equal amount of expert data, even when BC is a natural choice? To answer this question, we characterize the properties of environments that allow offline RL methods to perform better than BC methods, even when only provided with expert data. Additionally, we show that policies trained on sufficiently noisy suboptimal data can attain better performance than even BC algorithms with expert data, especially on long-horizon problems. We validate our theoretical results via extensive experiments on both diagnostic and high-dimensional domains including robotic manipulation, maze navigation, and Atari games, with a variety of data distributions. We observe that, under specific but common conditions such as sparse rewards or noisy data sources, modern offline RL methods can significantly outperform BC.
Abstract:Black-box model-based optimization (MBO) problems, where the goal is to find a design input that maximizes an unknown objective function, are ubiquitous in a wide range of domains, such as the design of proteins, DNA sequences, aircraft, and robots. Solving model-based optimization problems typically requires actively querying the unknown objective function on design proposals, which means physically building the candidate molecule, aircraft, or robot, testing it, and storing the result. This process can be expensive and time consuming, and one might instead prefer to optimize for the best design using only the data one already has. This setting -- called offline MBO -- poses substantial and different algorithmic challenges than more commonly studied online techniques. A number of recent works have demonstrated success with offline MBO for high-dimensional optimization problems using high-capacity deep neural networks. However, the lack of standardized benchmarks in this emerging field is making progress difficult to track. To address this, we present Design-Bench, a benchmark for offline MBO with a unified evaluation protocol and reference implementations of recent methods. Our benchmark includes a suite of diverse and realistic tasks derived from real-world optimization problems in biology, materials science, and robotics that present distinct challenges for offline MBO. Our benchmark and reference implementations are released at github.com/rail-berkeley/design-bench and github.com/rail-berkeley/design-baselines.