Abstract:Goal-conditioned reinforcement learning (GCRL) with sparse rewards remains a fundamental challenge in reinforcement learning. While hindsight experience replay (HER) has shown promise by relabeling collected trajectories with achieved goals, we argue that trajectory relabeling alone does not fully exploit the available experiences in off-policy GCRL methods, resulting in limited sample efficiency. In this paper, we propose Hindsight Goal-conditioned Regularization (HGR), a technique that generates action regularization priors based on hindsight goals. When combined with hindsight self-imitation regularization (HSR), our approach enables off-policy RL algorithms to maximize experience utilization. Compared to existing GCRL methods that employ HER and self-imitation techniques, our hindsight regularizations achieve substantially more efficient sample reuse and the best performances, which we empirically demonstrate on a suite of navigation and manipulation tasks.
Abstract:Slot Attention (SA) and its variants lie at the heart of mainstream Object-Centric Learning (OCL). Objects in an image can be aggregated into respective slot vectors, by \textit{iteratively} refining cold-start query vectors, typically three times, via SA on image features. For video, such aggregation is \textit{recurrently} shared across frames, with queries cold-started on the first frame while transitioned from the previous frame's slots on non-first frames. However, the cold-start queries lack sample-specific cues thus hinder precise aggregation on the image or video's first frame; Also, non-first frames' queries are already sample-specific thus require transforms different from the first frame's aggregation. We address these issues for the first time with our \textit{SmoothSA}: (1) To smooth SA iterations on the image or video's first frame, we \textit{preheat} the cold-start queries with rich information of input features, via a tiny module self-distilled inside OCL; (2) To smooth SA recurrences across all video frames, we \textit{differentiate} the homogeneous transforms on the first and non-first frames, by using full and single iterations respectively. Comprehensive experiments on object discovery, recognition and downstream benchmarks validate our method's effectiveness. Further analyses intuitively illuminate how our method smooths SA iterations and recurrences. Our code is available in the supplement.
Abstract:Unlike popular solutions based on dense feature maps, Object-Centric Learning (OCL) represents visual scenes as sub-symbolic object-level feature vectors, termed slots, which are highly versatile for tasks involving visual modalities. OCL typically aggregates object superpixels into slots by iteratively applying competitive cross attention, known as Slot Attention, with the slots as the query. However, once initialized, these slots are reused naively, causing redundant slots to compete with informative ones for representing objects. This often results in objects being erroneously segmented into parts. Additionally, mainstream methods derive supervision signals solely from decoding slots into the input's reconstruction, overlooking potential supervision based on internal information. To address these issues, we propose Slot Attention with re-Initialization and self-Distillation (DIAS): $\emph{i)}$ We reduce redundancy in the aggregated slots and re-initialize extra aggregation to update the remaining slots; $\emph{ii)}$ We drive the bad attention map at the first aggregation iteration to approximate the good at the last iteration to enable self-distillation. Experiments demonstrate that DIAS achieves state-of-the-art on OCL tasks like object discovery and recognition, while also improving advanced visual prediction and reasoning. Our code is available on https://github.com/Genera1Z/DIAS.
Abstract:Mobile manipulation is a critical capability for robots operating in diverse, real-world environments. However, manipulating deformable objects and materials remains a major challenge for existing robot learning algorithms. While various benchmarks have been proposed to evaluate manipulation strategies with rigid objects, there is still a notable lack of standardized benchmarks that address mobile manipulation tasks involving deformable objects. To address this gap, we introduce MoDeSuite, the first Mobile Manipulation Deformable Object task suite, designed specifically for robot learning. MoDeSuite consists of eight distinct mobile manipulation tasks covering both elastic objects and deformable objects, each presenting a unique challenge inspired by real-world robot applications. Success in these tasks requires effective collaboration between the robot's base and manipulator, as well as the ability to exploit the deformability of the objects. To evaluate and demonstrate the use of the proposed benchmark, we train two state-of-the-art reinforcement learning algorithms and two imitation learning algorithms, highlighting the difficulties encountered and showing their performance in simulation. Furthermore, we demonstrate the practical relevance of the suite by deploying the trained policies directly into the real world with the Spot robot, showcasing the potential for sim-to-real transfer. We expect that MoDeSuite will open a novel research domain in mobile manipulation involving deformable objects. Find more details, code, and videos at https://sites.google.com/view/modesuite/home.
Abstract:Learning object-level, structured representations is widely regarded as a key to better generalization in vision and underpins the design of next-generation Pre-trained Vision Models (PVMs). Mainstream Object-Centric Learning (OCL) methods adopt Slot Attention or its variants to iteratively aggregate objects' super-pixels into a fixed set of query feature vectors, termed slots. However, their reliance on a static slot count leads to an object being represented as multiple parts when the number of objects varies. We introduce MetaSlot, a plug-and-play Slot Attention variant that adapts to variable object counts. MetaSlot (i) maintains a codebook that holds prototypes of objects in a dataset by vector-quantizing the resulting slot representations; (ii) removes duplicate slots from the traditionally aggregated slots by quantizing them with the codebook; and (iii) injects progressively weaker noise into the Slot Attention iterations to accelerate and stabilize the aggregation. MetaSlot is a general Slot Attention variant that can be seamlessly integrated into existing OCL architectures. Across multiple public datasets and tasks--including object discovery and recognition--models equipped with MetaSlot achieve significant performance gains and markedly interpretable slot representations, compared with existing Slot Attention variants.
Abstract:Visual planning, by offering a sequence of intermediate visual subgoals to a goal-conditioned low-level policy, achieves promising performance on long-horizon manipulation tasks. To obtain the subgoals, existing methods typically resort to video generation models but suffer from model hallucination and computational cost. We present Vis2Plan, an efficient, explainable and white-box visual planning framework powered by symbolic guidance. From raw, unlabeled play data, Vis2Plan harnesses vision foundation models to automatically extract a compact set of task symbols, which allows building a high-level symbolic transition graph for multi-goal, multi-stage planning. At test time, given a desired task goal, our planner conducts planning at the symbolic level and assembles a sequence of physically consistent intermediate sub-goal images grounded by the underlying symbolic representation. Our Vis2Plan outperforms strong diffusion video generation-based visual planners by delivering 53\% higher aggregate success rate in real robot settings while generating visual plans 35$\times$ faster. The results indicate that Vis2Plan is able to generate physically consistent image goals while offering fully inspectable reasoning steps.
Abstract:We introduce RGB-Th-Bench, the first benchmark designed to evaluate the ability of Vision-Language Models (VLMs) to comprehend RGB-Thermal image pairs. While VLMs have demonstrated remarkable progress in visual reasoning and multimodal understanding, their evaluation has been predominantly limited to RGB-based benchmarks, leaving a critical gap in assessing their capabilities in infrared vision tasks. Existing visible-infrared datasets are either task-specific or lack high-quality annotations necessary for rigorous model evaluation. To address these limitations, RGB-Th-Bench provides a comprehensive evaluation framework covering 14 distinct skill dimensions, with a total of 1,600+ expert-annotated Yes/No questions. The benchmark employs two accuracy metrics: a standard question-level accuracy and a stricter skill-level accuracy, which evaluates model robustness across multiple questions within each skill dimension. This design ensures a thorough assessment of model performance, including resilience to adversarial and hallucinated responses. We conduct extensive evaluations on 19 state-of-the-art VLMs, revealing significant performance gaps in RGB-Thermal understanding. Our results show that even the strongest models struggle with thermal image comprehension, with performance heavily constrained by their RGB-based capabilities. Additionally, the lack of large-scale application-specific and expert-annotated thermal-caption-pair datasets in pre-training is an important reason of the observed performance gap. RGB-Th-Bench highlights the urgent need for further advancements in multimodal learning to bridge the gap between visible and thermal image understanding. The dataset is available through this link, and the evaluation code will also be made publicly available.
Abstract:Learning to perform accurate and rich simulations of human driving behaviors from data for autonomous vehicle testing remains challenging due to human driving styles' high diversity and variance. We address this challenge by proposing a novel approach that leverages contrastive learning to extract a dictionary of driving styles from pre-existing human driving data. We discretize these styles with quantization, and the styles are used to learn a conditional diffusion policy for simulating human drivers. Our empirical evaluation confirms that the behaviors generated by our approach are both safer and more human-like than those of the machine-learning-based baseline methods. We believe this has the potential to enable higher realism and more effective techniques for evaluating and improving the performance of autonomous vehicles.
Abstract:Decomposing visual scenes into objects, as humans do, facilitates modeling object relations and dynamics. Object-Centric Learning (OCL) achieves this by aggregating image or video feature maps into object-level feature vectors, known as \textit{slots}. OCL's self-supervision via reconstructing the input from slots struggles with complex textures, thus many methods employ Vision Foundation Models (VFMs) to extract feature maps with better objectness. However, using VFMs merely as feature extractors does not fully unlock their potential. We propose Vector-Quantized VFMs for OCL (VQ-VFM-OCL, or VVO), where VFM features are extracted to facilitate object-level information aggregation and further quantized to strengthen supervision in reconstruction. Our VVO unifies OCL representatives into a concise architecture. Experiments demonstrate that VVO not only outperforms mainstream methods on object discovery tasks but also benefits downstream tasks like visual prediction and reasoning. The source code is available in the supplement.
Abstract:Sample-efficient robot learning is a longstanding goal in robotics. Inspired by the success of scaling in vision and language, the robotics community is now investigating large-scale offline datasets for robot learning. However, existing methods often require expert and/or reward-labeled task-specific data, which can be costly and limit their application in practice. In this paper, we consider a more realistic setting where the offline data consists of reward-free and non-expert multi-embodiment offline data. We show that generalist world model pre-training (WPT), together with retrieval-based experience rehearsal and execution guidance, enables efficient reinforcement learning (RL) and fast task adaptation with such non-curated data. In experiments over 72 visuomotor tasks, spanning 6 different embodiments, covering hard exploration, complex dynamics, and various visual properties, WPT achieves 35.65% and 35% higher aggregated score compared to widely used learning-from-scratch baselines, respectively.