Abstract:Spiking Neural Networks (SNNs) have emerged as a new generation of energy-efficient neural networks suitable for implementation on neuromorphic hardware. As neuromorphic hardware has limited memory and computing resources, weight pruning and quantization have recently been explored to improve SNNs' efficiency. State-of-the-art SNN pruning/quantization methods employ multiple compression and training iterations, increasing the cost for pre-trained or very large SNNs. In this paper, we propose a new one-shot post-training pruning/quantization framework, Optimal Spiking Brain Compression (OSBC), that adapts the Optimal Brain Compression (OBC) method of [Frantar, Singh, and Alistarh, 2023] for SNNs. Rather than minimizing the loss on neuron input current as OBC does, OSBC achieves more efficient and accurate SNN compression in one pass by minimizing the loss on spiking neuron membrane potential with a small sample dataset. Our experiments on neuromorphic datasets (N-MNIST, CIFAR10-DVS, DVS128-Gesture) demonstrate that OSBC can achieve 97% sparsity through pruning with 1.41%, 10.20%, and 1.74% accuracy loss, or 4-bit symmetric quantization with 0.17%, 1.54%, and 7.71% accuracy loss, respectively. Code will be available on GitHub.
Abstract:Mathematical reasoning lies at the heart of artificial intelligence, underpinning applications in education, program verification, and research-level mathematical discovery. Mathematical competitions, in particular, present two challenging problem types: theorem-proving, requiring rigorous proofs of stated conclusions, and answer-construction, involving hypothesizing and formally verifying mathematical objects. Large Language Models (LLMs) effectively generate creative candidate answers but struggle with formal verification, while symbolic provers ensure rigor but cannot efficiently handle creative conjecture generation. We introduce the Enumerate-Conjecture-Prove (ECP) framework, a modular neuro-symbolic method integrating LLM-based enumeration and pattern-driven conjecturing with formal theorem proving. We present ConstructiveBench, a dataset of 3,431 answer-construction problems in various math competitions with verified Lean formalizations. On the ConstructiveBench dataset, ECP improves the accuracy of answer construction from the Chain-of-Thought (CoT) baseline of 14.54% to 45.06% with the gpt-4.1-mini model. Moreover, combining with ECP's constructed answers, the state-of-the-art DeepSeek-Prover-V2-7B model generates correct proofs for 858 of the 3,431 constructive problems in Lean, achieving 25.01% accuracy, compared to 9.86% for symbolic-only baselines. Our code and dataset are publicly available at GitHub and HuggingFace, respectively.
Abstract:Image enhancement finds wide-ranging applications in real-world scenarios due to complex environments and the inherent limitations of imaging devices. Recent diffusion-based methods yield promising outcomes but necessitate prolonged and computationally intensive iterative sampling. In response, we propose InstaRevive, a straightforward yet powerful image enhancement framework that employs score-based diffusion distillation to harness potent generative capability and minimize the sampling steps. To fully exploit the potential of the pre-trained diffusion model, we devise a practical and effective diffusion distillation pipeline using dynamic control to address inaccuracies in updating direction during score matching. Our control strategy enables a dynamic diffusing scope, facilitating precise learning of denoising trajectories within the diffusion model and ensuring accurate distribution matching gradients during training. Additionally, to enrich guidance for the generative power, we incorporate textual prompts via image captioning as auxiliary conditions, fostering further exploration of the diffusion model. Extensive experiments substantiate the efficacy of our framework across a diverse array of challenging tasks and datasets, unveiling the compelling efficacy and efficiency of InstaRevive in delivering high-quality and visually appealing results. Code is available at https://github.com/EternalEvan/InstaRevive.
Abstract:Large pre-trained vision-language models (VLMs) offer a promising approach to leveraging human language for enhancing downstream tasks. However, VLMs such as CLIP face significant limitation: its performance is highly sensitive to prompt template design. Although prompt learning methods can address the sensitivity issue by replacing natural language prompts with learnable ones, they are incomprehensible to humans. Ensuring consistent performance across various prompt templates enables models to adapt seamlessly to diverse phrasings, enhancing their ability to handle downstream tasks without requiring extensive prompt engineering. In this work, we introduce the RobustPrompt Benchmark, a systematic benchmark to evaluate robustness to different prompt templates for VLMs. It includes a dataset with hundreds of carefully designed prompt templates, divided into six types, covering a wide variety of commonly used templates. Beside the benchmark, we propose Modeling Variants of Prompts (MVP), a simple yet effective method that mitigates sensitivity by modeling variants of prompt structures. The innovation of MVP lies in decoupling prompts into templates and class names, and using Variational Autoencoders (VAE) to model the distribution of diverse prompt structures. Experiments across 11 datasets demonstrate that MVP can greatly enhance model robustness to variations in input prompts without a drop in performance. The code is available at https://github.com/xiaoyaoxinyi/MVP.
Abstract:In applications of diffusion models, controllable generation is of practical significance, but is also challenging. Current methods for controllable generation primarily focus on modifying the score function of diffusion models, while Mean Reverting (MR) Diffusion directly modifies the structure of the stochastic differential equation (SDE), making the incorporation of image conditions simpler and more natural. However, current training-free fast samplers are not directly applicable to MR Diffusion. And thus MR Diffusion requires hundreds of NFEs (number of function evaluations) to obtain high-quality samples. In this paper, we propose a new algorithm named MRS (MR Sampler) to reduce the sampling NFEs of MR Diffusion. We solve the reverse-time SDE and the probability flow ordinary differential equation (PF-ODE) associated with MR Diffusion, and derive semi-analytical solutions. The solutions consist of an analytical function and an integral parameterized by a neural network. Based on this solution, we can generate high-quality samples in fewer steps. Our approach does not require training and supports all mainstream parameterizations, including noise prediction, data prediction and velocity prediction. Extensive experiments demonstrate that MR Sampler maintains high sampling quality with a speedup of 10 to 20 times across ten different image restoration tasks. Our algorithm accelerates the sampling procedure of MR Diffusion, making it more practical in controllable generation.
Abstract:Large language models (LLMs) exhibit remarkable capabilities in visual inspection of medical time-series data, achieving proficiency comparable to human clinicians. However, their broad scope limits domain-specific precision, and proprietary weights hinder fine-tuning for specialized datasets. In contrast, small specialized models (SSMs) excel in targeted tasks but lack the contextual reasoning required for complex clinical decision-making. To address these challenges, we propose ConMIL (Conformalized Multiple Instance Learning), a decision-support SSM that integrates seamlessly with LLMs. By using Multiple Instance Learning (MIL) to identify clinically significant signal segments and conformal prediction for calibrated set-valued outputs, ConMIL enhances LLMs' interpretative capabilities for medical time-series analysis. Experimental results demonstrate that ConMIL significantly improves the performance of state-of-the-art LLMs, such as ChatGPT4.0 and Qwen2-VL-7B. Specifically, \ConMIL{}-supported Qwen2-VL-7B achieves 94.92% and 96.82% precision for confident samples in arrhythmia detection and sleep staging, compared to standalone LLM accuracy of 46.13% and 13.16%. These findings highlight the potential of ConMIL to bridge task-specific precision and broader contextual reasoning, enabling more reliable and interpretable AI-driven clinical decision support.
Abstract:Sentiment analysis and emotion recognition are crucial for applications such as human-computer interaction and depression detection. Traditional unimodal methods often fail to capture the complexity of emotional expressions due to conflicting signals from different modalities. Current Multimodal Large Language Models (MLLMs) also face challenges in detecting subtle facial expressions and addressing a wide range of emotion-related tasks. To tackle these issues, we propose M2SE, a Multistage Multitask Sentiment and Emotion Instruction Tuning Strategy for general-purpose MLLMs. It employs a combined approach to train models on tasks such as multimodal sentiment analysis, emotion recognition, facial expression recognition, emotion reason inference, and emotion cause-pair extraction. We also introduce the Emotion Multitask dataset (EMT), a custom dataset that supports these five tasks. Our model, Emotion Universe (EmoVerse), is built on a basic MLLM framework without modifications, yet it achieves substantial improvements across these tasks when trained with the M2SE strategy. Extensive experiments demonstrate that EmoVerse outperforms existing methods, achieving state-of-the-art results in sentiment and emotion tasks. These results highlight the effectiveness of M2SE in enhancing multimodal emotion perception. The dataset and code are available at https://github.com/xiaoyaoxinyi/M2SE.
Abstract:Camouflaged Object Segmentation (COS) faces significant challenges due to the scarcity of annotated data, where meticulous pixel-level annotation is both labor-intensive and costly, primarily due to the intricate object-background boundaries. Addressing the core question, "Can COS be effectively achieved in a zero-shot manner without manual annotations for any camouflaged object?" we affirmatively respond and introduce a robust zero-shot COS framework. This framework leverages the inherent local pattern bias of COS and employs a broad semantic feature space derived from salient object segmentation (SOS) for efficient zero-shot transfer. We incorporate an Masked Image Modeling (MIM) based image encoder optimized for Parameter-Efficient Fine-Tuning (PEFT), a Multimodal Large Language Model (M-LLM), and a Multi-scale Fine-grained Alignment (MFA) mechanism. The MIM pre-trained image encoder focuses on capturing essential low-level features, while the M-LLM generates caption embeddings processed alongside these visual cues. These embeddings are precisely aligned using MFA, enabling our framework to accurately interpret and navigate complex semantic contexts. To optimize operational efficiency, we introduce a learnable codebook that represents the M-LLM during inference, significantly reducing computational overhead. Our framework demonstrates its versatility and efficacy through rigorous experimentation, achieving state-of-the-art performance in zero-shot COS with $F_{\beta}^w$ scores of 72.9\% on CAMO and 71.7\% on COD10K. By removing the M-LLM during inference, we achieve an inference speed comparable to that of traditional end-to-end models, reaching 18.1 FPS. Code: https://github.com/R-LEI360725/ZSCOS-CaMF
Abstract:Through the collaboration of multiple agents possessing diverse expertise and tools, multi-agent systems achieve impressive progress in solving real-world problems. Given the user queries, the meta-agents, serving as the brain within these systems, are required to decompose the queries into multiple sub-tasks that can be allocated to suitable agents capable of solving them, so-called agent-oriented planning. In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy, to ensure that each sub-task is effectively resolved, leading to satisfactory responses to the original queries. These principles further inspire us to propose a novel framework for agent-oriented planning in multi-agent systems, leveraging a fast task decomposition and allocation process followed by an effective and efficient evaluation via a reward model. During the planning process, the meta-agent is also responsible for evaluating the performance of the expert agents, making timely adjustments to the sub-tasks and scheduling as necessary. Besides, we integrate a feedback loop into the proposed framework to further enhance the effectiveness and robustness of such a problem-solving process. Extensive experiments demonstrate the advancement of the proposed framework in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems.
Abstract:Platooning technology is renowned for its precise vehicle control, traffic flow optimization, and energy efficiency enhancement. However, in large-scale mixed platoons, vehicle heterogeneity and unpredictable traffic conditions lead to virtual bottlenecks. These bottlenecks result in reduced traffic throughput and increased energy consumption within the platoon. To address these challenges, we introduce a decision-making strategy based on nested graph reinforcement learning. This strategy improves collaborative decision-making, ensuring energy efficiency and alleviating congestion. We propose a theory of nested traffic graph representation that maps dynamic interactions between vehicles and platoons in non-Euclidean spaces. By incorporating spatio-temporal weighted graph into a multi-head attention mechanism, we further enhance the model's capacity to process both local and global data. Additionally, we have developed a nested graph reinforcement learning framework to enhance the self-iterative learning capabilities of platooning. Using the I-24 dataset, we designed and conducted comparative algorithm experiments, generalizability testing, and permeability ablation experiments, thereby validating the proposed strategy's effectiveness. Compared to the baseline, our strategy increases throughput by 10% and decreases energy use by 9%. Specifically, increasing the penetration rate of CAVs significantly enhances traffic throughput, though it also increases energy consumption.