Abstract:In the current era of mobile internet, Lightweight Low-Light Image Enhancement (L3IE) is critical for mobile devices, which faces a persistent trade-off between visual quality and model compactness. While recent methods employ disentangling strategies to simplify lightweight architectural design, such as Retinex theory and YUV color space transformations, their performance is fundamentally limited by overlooking channel-specific degradation patterns and cross-channel interactions. To address this gap, we perform a frequency-domain analysis that confirms the superiority of the YUV color space for L3IE. We identify a key insight: the Y channel primarily loses low-frequency content, while the UV channels are corrupted by high-frequency noise. Leveraging this finding, we propose a novel YUV-based paradigm that strategically restores channels using a Dual-Stream Global-Local Attention module for the Y channel, a Y-guided Local-Aware Frequency Attention module for the UV channels, and a Guided Interaction module for final feature fusion. Extensive experiments validate that our model establishes a new state-of-the-art on multiple benchmarks, delivering superior visual quality with a significantly lower parameter count.
Abstract:Recent advancements in deep neural networks have driven significant progress in image enhancement (IE). However, deploying deep learning models on resource-constrained platforms, such as mobile devices, remains challenging due to high computation and memory demands. To address these challenges and facilitate real-time IE on mobile, we introduce an extremely lightweight Convolutional Neural Network (CNN) framework with around 4K parameters. Our approach integrates reparameterization with an Incremental Weight Optimization strategy to ensure efficiency. Additionally, we enhance performance with a Feature Self-Transform module and a Hierarchical Dual-Path Attention mechanism, optimized with a Local Variance-Weighted loss. With this efficient framework, we are the first to achieve real-time IE inference at up to 1,100 frames per second (FPS) while delivering competitive image quality, achieving the best trade-off between speed and performance across multiple IE tasks. The code will be available at https://github.com/AVC2-UESTC/MobileIE.git.