Abstract:Multimodal retrieval has emerged as a promising yet challenging research direction in recent years. Most existing studies in multimodal retrieval focus on capturing information in multimodal data that is similar to their paired texts, but often ignores the complementary information contained in multimodal data. In this study, we propose CIEA, a novel multimodal retrieval approach that employs Complementary Information Extraction and Alignment, which transforms both text and images in documents into a unified latent space and features a complementary information extractor designed to identify and preserve differences in the image representations. We optimize CIEA using two complementary contrastive losses to ensure semantic integrity and effectively capture the complementary information contained in images. Extensive experiments demonstrate the effectiveness of CIEA, which achieves significant improvements over both divide-and-conquer models and universal dense retrieval models. We provide an ablation study, further discussions, and case studies to highlight the advancements achieved by CIEA. To promote further research in the community, we have released the source code at https://github.com/zengdlong/CIEA.
Abstract:Large language model (LLM) agents face fundamental limitations in long-horizon reasoning due to finite context windows, making effective memory management critical. Existing methods typically handle long-term memory (LTM) and short-term memory (STM) as separate components, relying on heuristics or auxiliary controllers, which limits adaptability and end-to-end optimization. In this paper, we propose Agentic Memory (AgeMem), a unified framework that integrates LTM and STM management directly into the agent's policy. AgeMem exposes memory operations as tool-based actions, enabling the LLM agent to autonomously decide what and when to store, retrieve, update, summarize, or discard information. To train such unified behaviors, we propose a three-stage progressive reinforcement learning strategy and design a step-wise GRPO to address sparse and discontinuous rewards induced by memory operations. Experiments on five long-horizon benchmarks demonstrate that AgeMem consistently outperforms strong memory-augmented baselines across multiple LLM backbones, achieving improved task performance, higher-quality long-term memory, and more efficient context usage.
Abstract:Trinity-RFT is a general-purpose, flexible and scalable framework designed for reinforcement fine-tuning (RFT) of large language models. It is built with a decoupled design, consisting of (1) an RFT-core that unifies and generalizes synchronous/asynchronous, on-policy/off-policy, and online/offline modes of RFT, (2) seamless integration for agent-environment interaction with high efficiency and robustness, and (3) systematic data pipelines optimized for RFT. Trinity-RFT can be easily adapted for diverse application scenarios, and serves as a unified platform for exploring advanced reinforcement learning paradigms. This technical report outlines the vision, features, design and implementations of Trinity-RFT, accompanied by extensive examples demonstrating the utility and user-friendliness of the proposed framework.
Abstract:Text-to-image diffusion models have gained widespread application across various domains, demonstrating remarkable creative potential. However, the strong generalization capabilities of diffusion models can inadvertently lead to the generation of not-safe-for-work (NSFW) content, posing significant risks to their safe deployment. While several concept erasure methods have been proposed to mitigate the issue associated with NSFW content, a comprehensive evaluation of their effectiveness across various scenarios remains absent. To bridge this gap, we introduce a full-pipeline toolkit specifically designed for concept erasure and conduct the first systematic study of NSFW concept erasure methods. By examining the interplay between the underlying mechanisms and empirical observations, we provide in-depth insights and practical guidance for the effective application of concept erasure methods in various real-world scenarios, with the aim of advancing the understanding of content safety in diffusion models and establishing a solid foundation for future research and development in this critical area.
Abstract:Tree-based models have achieved great success in a wide range of real-world applications due to their effectiveness, robustness, and interpretability, which inspired people to apply them in vertical federated learning (VFL) scenarios in recent years. In this paper, we conduct a comprehensive study to give an overall picture of applying tree-based models in VFL, from the perspective of their communication and computation protocols. We categorize tree-based models in VFL into two types, i.e., feature-gathering models and label-scattering models, and provide a detailed discussion regarding their characteristics, advantages, privacy protection mechanisms, and applications. This study also focuses on the implementation of tree-based models in VFL, summarizing several design principles for better satisfying various requirements from both academic research and industrial deployment. We conduct a series of experiments to provide empirical observations on the differences and advances of different types of tree-based models.
Abstract:Knowledge-intensive conversations supported by large language models (LLMs) have become one of the most popular and helpful applications that can assist people in different aspects. Many current knowledge-intensive applications are centered on retrieval-augmented generation (RAG) techniques. While many open-source RAG frameworks facilitate the development of RAG-based applications, they often fall short in handling practical scenarios complicated by heterogeneous data in topics and formats, conversational context management, and the requirement of low-latency response times. This technical report presents a configurable knowledge integrated multi-agent system, KIMAs, to address these challenges. KIMAs features a flexible and configurable system for integrating diverse knowledge sources with 1) context management and query rewrite mechanisms to improve retrieval accuracy and multi-turn conversational coherency, 2) efficient knowledge routing and retrieval, 3) simple but effective filter and reference generation mechanisms, and 4) optimized parallelizable multi-agent pipeline execution. Our work provides a scalable framework for advancing the deployment of LLMs in real-world settings. To show how KIMAs can help developers build knowledge-intensive applications with different scales and emphases, we demonstrate how we configure the system to three applications already running in practice with reliable performance.
Abstract:Retrieval-augmented generation (RAG) has emerged as a promising technology for addressing hallucination issues in the responses generated by large language models (LLMs). Existing studies on RAG primarily focus on applying semantic-based approaches to retrieve isolated relevant chunks, which ignore their intrinsic relationships. In this paper, we propose a novel Knowledge Graph-Guided Retrieval Augmented Generation (KG$^2$RAG) framework that utilizes knowledge graphs (KGs) to provide fact-level relationships between chunks, improving the diversity and coherence of the retrieved results. Specifically, after performing a semantic-based retrieval to provide seed chunks, KG$^2$RAG employs a KG-guided chunk expansion process and a KG-based chunk organization process to deliver relevant and important knowledge in well-organized paragraphs. Extensive experiments conducted on the HotpotQA dataset and its variants demonstrate the advantages of KG$^2$RAG compared to existing RAG-based approaches, in terms of both response quality and retrieval quality.




Abstract:Through the collaboration of multiple agents possessing diverse expertise and tools, multi-agent systems achieve impressive progress in solving real-world problems. Given the user queries, the meta-agents, serving as the brain within these systems, are required to decompose the queries into multiple sub-tasks that can be allocated to suitable agents capable of solving them, so-called agent-oriented planning. In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy, to ensure that each sub-task is effectively resolved, leading to satisfactory responses to the original queries. These principles further inspire us to propose a novel framework for agent-oriented planning in multi-agent systems, leveraging a fast task decomposition and allocation process followed by an effective and efficient evaluation via a reward model. During the planning process, the meta-agent is also responsible for evaluating the performance of the expert agents, making timely adjustments to the sub-tasks and scheduling as necessary. Besides, we integrate a feedback loop into the proposed framework to further enhance the effectiveness and robustness of such a problem-solving process. Extensive experiments demonstrate the advancement of the proposed framework in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems.
Abstract:Federated learning (FL) has emerged as a promising paradigm for fine-tuning foundation models using distributed data in a privacy-preserving manner. Under limited computational resources, clients often find it more practical to fine-tune a selected subset of layers, rather than the entire model, based on their task-specific data. In this study, we provide a thorough theoretical exploration of selective layer fine-tuning in FL, emphasizing a flexible approach that allows the clients to adjust their selected layers according to their local data and resources. We theoretically demonstrate that the layer selection strategy has a significant impact on model convergence in two critical aspects: the importance of selected layers and the heterogeneous choices across clients. Drawing from these insights, we further propose a strategic layer selection method that utilizes local gradients and regulates layer selections across clients. The extensive experiments on both image and text datasets demonstrate the effectiveness of the proposed strategy compared with several baselines, highlighting its advances in identifying critical layers that adapt to the client heterogeneity and training dynamics in FL.
Abstract:Federated learning (FL) becomes vulnerable to Byzantine attacks where some of participators tend to damage the utility or discourage the convergence of the learned model via sending their malicious model updates. Previous works propose to apply robust rules to aggregate updates from participators against different types of Byzantine attacks, while at the same time, attackers can further design advanced Byzantine attack algorithms targeting specific aggregation rule when it is known. In practice, FL systems can involve a black-box server that makes the adopted aggregation rule inaccessible to participants, which can naturally defend or weaken some Byzantine attacks. In this paper, we provide an in-depth understanding on the Byzantine robustness of the FL system with a black-box server. Our investigation demonstrates the improved Byzantine robustness of a black-box server employing a dynamic defense strategy. We provide both empirical evidence and theoretical analysis to reveal that the black-box server can mitigate the worst-case attack impact from a maximum level to an expectation level, which is attributed to the inherent inaccessibility and randomness offered by a black-box server.The source code is available at https://github.com/alibaba/FederatedScope/tree/Byzantine_attack_defense to promote further research in the community.