Abstract:Accurate fetal biometric measurements, such as abdominal circumference, play a vital role in prenatal care. However, obtaining high-quality ultrasound images for these measurements heavily depends on the expertise of sonographers, posing a significant challenge in low-income countries due to the scarcity of trained personnel. To address this issue, we leverage FetalCLIP, a vision-language model pretrained on a curated dataset of over 210,000 fetal ultrasound image-caption pairs, to perform automated fetal ultrasound image quality assessment (IQA) on blind-sweep ultrasound data. We introduce FetalCLIP$_{CLS}$, an IQA model adapted from FetalCLIP using Low-Rank Adaptation (LoRA), and evaluate it on the ACOUSLIC-AI dataset against six CNN and Transformer baselines. FetalCLIP$_{CLS}$ achieves the highest F1 score of 0.757. Moreover, we show that an adapted segmentation model, when repurposed for classification, further improves performance, achieving an F1 score of 0.771. Our work demonstrates how parameter-efficient fine-tuning of fetal ultrasound foundation models can enable task-specific adaptations, advancing prenatal care in resource-limited settings. The experimental code is available at: https://github.com/donglihe-hub/FetalCLIP-IQA.
Abstract:Large Vision-Language Models (LVLMs) have advanced multimodal learning but face high computational costs due to the large number of visual tokens, motivating token pruning to improve inference efficiency. The key challenge lies in identifying which tokens are truly important. Most existing approaches rely on attention-based criteria to estimate token importance. However, they inherently suffer from certain limitations, such as positional bias. In this work, we explore a new perspective on token importance based on token transitions in LVLMs. We observe that the transition of token representations provides a meaningful signal of semantic information. Based on this insight, we propose TransPrune, a training-free and efficient token pruning method. Specifically, TransPrune progressively prunes tokens by assessing their importance through a combination of Token Transition Variation (TTV)-which measures changes in both the magnitude and direction of token representations-and Instruction-Guided Attention (IGA), which measures how strongly the instruction attends to image tokens via attention. Extensive experiments demonstrate that TransPrune achieves comparable multimodal performance to original LVLMs, such as LLaVA-v1.5 and LLaVA-Next, across eight benchmarks, while reducing inference TFLOPs by more than half. Moreover, TTV alone can serve as an effective criterion without relying on attention, achieving performance comparable to attention-based methods. The code will be made publicly available upon acceptance of the paper at https://github.com/liaolea/TransPrune.
Abstract:Adversarial examples have attracted significant attention over the years, yet understanding their frequency-based characteristics remains insufficient. In this paper, we investigate the intriguing properties of adversarial examples in the frequency domain for the image classification task, with the following key findings. (1) As the high-frequency components increase, the performance gap between adversarial and natural examples becomes increasingly pronounced. (2) The model performance against filtered adversarial examples initially increases to a peak and declines to its inherent robustness. (3) In Convolutional Neural Networks, mid- and high-frequency components of adversarial examples exhibit their attack capabilities, while in Transformers, low- and mid-frequency components of adversarial examples are particularly effective. These results suggest that different network architectures have different frequency preferences and that differences in frequency components between adversarial and natural examples may directly influence model robustness. Based on our findings, we further conclude with three useful proposals that serve as a valuable reference to the AI model security community.
Abstract:Multi-view stereo (MVS) models based on progressive depth hypothesis narrowing have made remarkable advancements. However, existing methods haven't fully utilized the potential that the depth coverage of individual instances is smaller than that of the entire scene, which restricts further improvements in depth estimation precision. Moreover, inevitable deviations in the initial stage accumulate as the process advances. In this paper, we propose Instance-Adaptive MVS (IA-MVS). It enhances the precision of depth estimation by narrowing the depth hypothesis range and conducting refinement on each instance. Additionally, a filtering mechanism based on intra-instance depth continuity priors is incorporated to boost robustness. Furthermore, recognizing that existing confidence estimation can degrade IA-MVS performance on point clouds. We have developed a detailed mathematical model for confidence estimation based on conditional probability. The proposed method can be widely applied in models based on MVSNet without imposing extra training burdens. Our method achieves state-of-the-art performance on the DTU benchmark. The source code is available at https://github.com/KevinWang73106/IA-MVS.
Abstract:Reward baseline is important for Reinforcement Learning (RL) algorithms to reduce variance in policy gradient estimates. Recently, for language modeling, Group Relative Policy Optimization (GRPO) is proposed to compute the advantage for each output by subtracting the mean reward, as the baseline, for all outputs in the group. However, it can lead to inaccurate advantage estimates in environments with highly noisy rewards, potentially introducing bias. In this work, we propose a model, called Kalman Filter Enhanced Group Relative Policy Optimization (KRPO), by using lightweight Kalman filtering to dynamically estimate the latent reward mean and variance. This filtering technique replaces the naive batch mean baseline, enabling more adaptive advantage normalization. Our method does not require additional learned parameters over GRPO. This approach offers a simple yet effective way to incorporate multiple outputs of GRPO into advantage estimation, improving policy optimization in settings where highly dynamic reward signals are difficult to model for language models. Through experiments and analyses, we show that using a more adaptive advantage estimation model, KRPO can improve the stability and performance of GRPO. The code is available at https://github.com/billhhh/KRPO_LLMs_RL
Abstract:High Dynamic Range Novel View Synthesis (HDR-NVS) aims to establish a 3D scene HDR model from Low Dynamic Range (LDR) imagery. Typically, multiple-exposure LDR images are employed to capture a wider range of brightness levels in a scene, as a single LDR image cannot represent both the brightest and darkest regions simultaneously. While effective, this multiple-exposure HDR-NVS approach has significant limitations, including susceptibility to motion artifacts (e.g., ghosting and blurring), high capture and storage costs. To overcome these challenges, we introduce, for the first time, the single-exposure HDR-NVS problem, where only single exposure LDR images are available during training. We further introduce a novel approach, Mono-HDR-3D, featuring two dedicated modules formulated by the LDR image formation principles, one for converting LDR colors to HDR counterparts, and the other for transforming HDR images to LDR format so that unsupervised learning is enabled in a closed loop. Designed as a meta-algorithm, our approach can be seamlessly integrated with existing NVS models. Extensive experiments show that Mono-HDR-3D significantly outperforms previous methods. Source code will be released.
Abstract:The complex nature of medical image segmentation calls for models that are specifically designed to capture detailed, domain-specific features. Large foundation models offer considerable flexibility, yet the cost of fine-tuning these models remains a significant barrier. Parameter-Efficient Fine-Tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA), efficiently update model weights with low-rank matrices but may suffer from underfitting when the chosen rank is insufficient to capture domain-specific nuances. Conversely, full-rank Singular Value Decomposition (SVD) based methods provide comprehensive updates by modifying all singular values, yet they often lack flexibility and exhibit variable performance across datasets. We propose SALT (Singular Value Adaptation with Low-Rank Transformation), a method that selectively adapts the most influential singular values using trainable scale and shift parameters while complementing this with a low-rank update for the remaining subspace. This hybrid approach harnesses the advantages of both LoRA and SVD, enabling effective adaptation without relying on increasing model size or depth. Evaluated on 5 challenging medical datasets, ranging from as few as 20 samples to 1000, SALT outperforms state-of-the-art PEFT (LoRA and SVD) by 2% to 5% in Dice with only 3.9% trainable parameters, demonstrating robust adaptation even in low-resource settings. The code for SALT is available at: https://github.com/BioMedIA-MBZUAI/SALT
Abstract:Large pre-trained vision-language models (VLMs) offer a promising approach to leveraging human language for enhancing downstream tasks. However, VLMs such as CLIP face significant limitation: its performance is highly sensitive to prompt template design. Although prompt learning methods can address the sensitivity issue by replacing natural language prompts with learnable ones, they are incomprehensible to humans. Ensuring consistent performance across various prompt templates enables models to adapt seamlessly to diverse phrasings, enhancing their ability to handle downstream tasks without requiring extensive prompt engineering. In this work, we introduce the RobustPrompt Benchmark, a systematic benchmark to evaluate robustness to different prompt templates for VLMs. It includes a dataset with hundreds of carefully designed prompt templates, divided into six types, covering a wide variety of commonly used templates. Beside the benchmark, we propose Modeling Variants of Prompts (MVP), a simple yet effective method that mitigates sensitivity by modeling variants of prompt structures. The innovation of MVP lies in decoupling prompts into templates and class names, and using Variational Autoencoders (VAE) to model the distribution of diverse prompt structures. Experiments across 11 datasets demonstrate that MVP can greatly enhance model robustness to variations in input prompts without a drop in performance. The code is available at https://github.com/xiaoyaoxinyi/MVP.
Abstract:Model merging is an effective strategy to merge multiple models for enhancing model performances, and more efficient than ensemble learning as it will not introduce extra computation into inference. However, limited research explores if the merging process can occur within one model and enhance the model's robustness, which is particularly critical in the medical image domain. In the paper, we are the first to propose in-model merging (InMerge), a novel approach that enhances the model's robustness by selectively merging similar convolutional kernels in the deep layers of a single convolutional neural network (CNN) during the training process for classification. We also analytically reveal important characteristics that affect how in-model merging should be performed, serving as an insightful reference for the community. We demonstrate the feasibility and effectiveness of this technique for different CNN architectures on 4 prevalent datasets. The proposed InMerge-trained model surpasses the typically-trained model by a substantial margin. The code will be made public.
Abstract:Weight-averaged model-merging has emerged as a powerful approach in deep learning, capable of enhancing model performance without fine-tuning or retraining. However, the underlying mechanisms that explain its effectiveness remain largely unexplored. In this paper, we investigate this technique from three novel perspectives to provide deeper insights into how and why weight-averaged model-merging works: (1) we examine the intrinsic patterns captured by the learning of the model weights, through the visualizations of their patterns on several datasets, showing that these weights often encode structured and interpretable patterns; (2) we investigate model ensemble merging strategies based on averaging on weights versus averaging on features, providing detailed analyses across diverse architectures and datasets; and (3) we explore the impact on model-merging prediction stability in terms of changing the parameter magnitude, revealing insights into the way of weight averaging works as regularization by showing the robustness across different parameter scales. Our findings shed light on the "black box" of weight-averaged model-merging, offering valuable insights and practical recommendations that advance the model-merging process.