Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"photo": models, code, and papers

Factorized and Controllable Neural Re-Rendering of Outdoor Scene for Photo Extrapolation

Add code

Jul 14, 2022
Boming Zhao, Bangbang Yang, Zhenyang Li, Zuoyue Li, Guofeng Zhang, Jiashu Zhao, Dawei Yin, Zhaopeng Cui, Hujun Bao

Expanding an existing tourist photo from a partially captured scene to a full scene is one of the desired experiences for photography applications. Although photo extrapolation has been well studied, it is much more challenging to extrapolate a photo (i.e., selfie) from a narrow field of view to a wider one while maintaining a similar visual style. In this paper, we propose a factorized neural re-rendering model to produce photorealistic novel views from cluttered outdoor Internet photo collections, which enables the applications including controllable scene re-rendering, photo extrapolation and even extrapolated 3D photo generation. Specifically, we first develop a novel factorized re-rendering pipeline to handle the ambiguity in the decomposition of geometry, appearance and illumination. We also propose a composited training strategy to tackle the unexpected occlusion in Internet images. Moreover, to enhance photo-realism when extrapolating tourist photographs, we propose a novel realism augmentation process to complement appearance details, which automatically propagates the texture details from a narrow captured photo to the extrapolated neural rendered image. The experiments and photo editing examples on outdoor scenes demonstrate the superior performance of our proposed method in both photo-realism and downstream applications.

* Accepted to ACM Multimedia 2022. Project Page: 

Adma-GAN: Attribute-Driven Memory Augmented GANs for Text-to-Image Generation

Add code

Sep 28, 2022
Xintian Wu, Hanbin Zhao, Liangli Zheng, Shouhong Ding, Xi Li

As a challenging task, text-to-image generation aims to generate photo-realistic and semantically consistent images according to the given text descriptions. Existing methods mainly extract the text information from only one sentence to represent an image and the text representation effects the quality of the generated image well. However, directly utilizing the limited information in one sentence misses some key attribute descriptions, which are the crucial factors to describe an image accurately. To alleviate the above problem, we propose an effective text representation method with the complements of attribute information. Firstly, we construct an attribute memory to jointly control the text-to-image generation with sentence input. Secondly, we explore two update mechanisms, sample-aware and sample-joint mechanisms, to dynamically optimize a generalized attribute memory. Furthermore, we design an attribute-sentence-joint conditional generator learning scheme to align the feature embeddings among multiple representations, which promotes the cross-modal network training. Experimental results illustrate that the proposed method obtains substantial performance improvements on both the CUB (FID from 14.81 to 8.57) and COCO (FID from 21.42 to 12.39) datasets.


Mind Reader: Reconstructing complex images from brain activities

Add code

Sep 30, 2022
Sikun Lin, Thomas Sprague, Ambuj K Singh

Understanding how the brain encodes external stimuli and how these stimuli can be decoded from the measured brain activities are long-standing and challenging questions in neuroscience. In this paper, we focus on reconstructing the complex image stimuli from fMRI (functional magnetic resonance imaging) signals. Unlike previous works that reconstruct images with single objects or simple shapes, our work aims to reconstruct image stimuli that are rich in semantics, closer to everyday scenes, and can reveal more perspectives. However, data scarcity of fMRI datasets is the main obstacle to applying state-of-the-art deep learning models to this problem. We find that incorporating an additional text modality is beneficial for the reconstruction problem compared to directly translating brain signals to images. Therefore, the modalities involved in our method are: (i) voxel-level fMRI signals, (ii) observed images that trigger the brain signals, and (iii) textual description of the images. To further address data scarcity, we leverage an aligned vision-language latent space pre-trained on massive datasets. Instead of training models from scratch to find a latent space shared by the three modalities, we encode fMRI signals into this pre-aligned latent space. Then, conditioned on embeddings in this space, we reconstruct images with a generative model. The reconstructed images from our pipeline balance both naturalness and fidelity: they are photo-realistic and capture the ground truth image contents well.


Vision-based Perimeter Defense via Multiview Pose Estimation

Add code

Sep 25, 2022
Elijah S. Lee, Giuseppe Loianno, Dinesh Jayaraman, Vijay Kumar

Previous studies in the perimeter defense game have largely focused on the fully observable setting where the true player states are known to all players. However, this is unrealistic for practical implementation since defenders may have to perceive the intruders and estimate their states. In this work, we study the perimeter defense game in a photo-realistic simulator and the real world, requiring defenders to estimate intruder states from vision. We train a deep machine learning-based system for intruder pose detection with domain randomization that aggregates multiple views to reduce state estimation errors and adapt the defensive strategy to account for this. We newly introduce performance metrics to evaluate the vision-based perimeter defense. Through extensive experiments, we show that our approach improves state estimation, and eventually, perimeter defense performance in both 1-defender-vs-1-intruder games, and 2-defenders-vs-1-intruder games.

* 7 pages, 10 figures 

Improving 3D-aware Image Synthesis with A Geometry-aware Discriminator

Add code

Sep 30, 2022
Zifan Shi, Yinghao Xu, Yujun Shen, Deli Zhao, Qifeng Chen, Dit-Yan Yeung

3D-aware image synthesis aims at learning a generative model that can render photo-realistic 2D images while capturing decent underlying 3D shapes. A popular solution is to adopt the generative adversarial network (GAN) and replace the generator with a 3D renderer, where volume rendering with neural radiance field (NeRF) is commonly used. Despite the advancement of synthesis quality, existing methods fail to obtain moderate 3D shapes. We argue that, considering the two-player game in the formulation of GANs, only making the generator 3D-aware is not enough. In other words, displacing the generative mechanism only offers the capability, but not the guarantee, of producing 3D-aware images, because the supervision of the generator primarily comes from the discriminator. To address this issue, we propose GeoD through learning a geometry-aware discriminator to improve 3D-aware GANs. Concretely, besides differentiating real and fake samples from the 2D image space, the discriminator is additionally asked to derive the geometry information from the inputs, which is then applied as the guidance of the generator. Such a simple yet effective design facilitates learning substantially more accurate 3D shapes. Extensive experiments on various generator architectures and training datasets verify the superiority of GeoD over state-of-the-art alternatives. Moreover, our approach is registered as a general framework such that a more capable discriminator (i.e., with a third task of novel view synthesis beyond domain classification and geometry extraction) can further assist the generator with a better multi-view consistency.

* Accepted by NeurIPS 2022. Project page: 

Human Performance Modeling and Rendering via Neural Animated Mesh

Add code

Sep 18, 2022
Fuqiang Zhao, Yuheng Jiang, Kaixin Yao, Jiakai Zhang, Liao Wang, Haizhao Dai, Yuhui Zhong, Yingliang Zhang, Minye Wu, Lan Xu, Jingyi Yu

We have recently seen tremendous progress in the neural advances for photo-real human modeling and rendering. However, it's still challenging to integrate them into an existing mesh-based pipeline for downstream applications. In this paper, we present a comprehensive neural approach for high-quality reconstruction, compression, and rendering of human performances from dense multi-view videos. Our core intuition is to bridge the traditional animated mesh workflow with a new class of highly efficient neural techniques. We first introduce a neural surface reconstructor for high-quality surface generation in minutes. It marries the implicit volumetric rendering of the truncated signed distance field (TSDF) with multi-resolution hash encoding. We further propose a hybrid neural tracker to generate animated meshes, which combines explicit non-rigid tracking with implicit dynamic deformation in a self-supervised framework. The former provides the coarse warping back into the canonical space, while the latter implicit one further predicts the displacements using the 4D hash encoding as in our reconstructor. Then, we discuss the rendering schemes using the obtained animated meshes, ranging from dynamic texturing to lumigraph rendering under various bandwidth settings. To strike an intricate balance between quality and bandwidth, we propose a hierarchical solution by first rendering 6 virtual views covering the performer and then conducting occlusion-aware neural texture blending. We demonstrate the efficacy of our approach in a variety of mesh-based applications and photo-realistic free-view experiences on various platforms, i.e., inserting virtual human performances into real environments through mobile AR or immersively watching talent shows with VR headsets.

* 18 pages, 17 figures 

MIDMs: Matching Interleaved Diffusion Models for Exemplar-based Image Translation

Add code

Sep 23, 2022
Junyoung Seo, Gyuseong Lee, Seokju Cho, Jiyoung Lee, Seungryong Kim

We present a novel method for exemplar-based image translation, called matching interleaved diffusion models (MIDMs). Most existing methods for this task were formulated as GAN-based matching-then-generation framework. However, in this framework, matching errors induced by the difficulty of semantic matching across cross-domain, e.g., sketch and photo, can be easily propagated to the generation step, which in turn leads to degenerated results. Motivated by the recent success of diffusion models overcoming the shortcomings of GANs, we incorporate the diffusion models to overcome these limitations. Specifically, we formulate a diffusion-based matching-and-generation framework that interleaves cross-domain matching and diffusion steps in the latent space by iteratively feeding the intermediate warp into the noising process and denoising it to generate a translated image. In addition, to improve the reliability of the diffusion process, we design a confidence-aware process using cycle-consistency to consider only confident regions during translation. Experimental results show that our MIDMs generate more plausible images than state-of-the-art methods.


FNeVR: Neural Volume Rendering for Face Animation

Add code

Sep 21, 2022
Bohan Zeng, Boyu Liu, Hong Li, Xuhui Liu, Jianzhuang Liu, Dapeng Chen, Wei Peng, Baochang Zhang

Face animation, one of the hottest topics in computer vision, has achieved a promising performance with the help of generative models. However, it remains a critical challenge to generate identity preserving and photo-realistic images due to the sophisticated motion deformation and complex facial detail modeling. To address these problems, we propose a Face Neural Volume Rendering (FNeVR) network to fully explore the potential of 2D motion warping and 3D volume rendering in a unified framework. In FNeVR, we design a 3D Face Volume Rendering (FVR) module to enhance the facial details for image rendering. Specifically, we first extract 3D information with a well-designed architecture, and then introduce an orthogonal adaptive ray-sampling module for efficient rendering. We also design a lightweight pose editor, enabling FNeVR to edit the facial pose in a simple yet effective way. Extensive experiments show that our FNeVR obtains the best overall quality and performance on widely used talking-head benchmarks.


Evolution of a Web-Scale Near Duplicate Image Detection System

Add code

Sep 18, 2022
Andrey Gusev, Jiajing Xu

Detecting near duplicate images is fundamental to the content ecosystem of photo sharing web applications. However, such a task is challenging when involving a web-scale image corpus containing billions of images. In this paper, we present an efficient system for detecting near duplicate images across 8 billion images. Our system consists of three stages: candidate generation, candidate selection, and clustering. We also demonstrate that this system can be used to greatly improve the quality of recommendations and search results across a number of real-world applications. In addition, we include the evolution of the system over the course of six years, bringing out experiences and lessons on how new systems are designed to accommodate organic content growth as well as the latest technology. Finally, we are releasing a human-labeled dataset of ~53,000 pairs of images introduced in this paper.


NeRF-SOS: Any-View Self-supervised Object Segmentation on Complex Scenes

Add code

Sep 23, 2022
Zhiwen Fan, Peihao Wang, Yifan Jiang, Xinyu Gong, Dejia Xu, Zhangyang Wang

Neural volumetric representations have shown the potential that Multi-layer Perceptrons (MLPs) can be optimized with multi-view calibrated images to represent scene geometry and appearance, without explicit 3D supervision. Object segmentation can enrich many downstream applications based on the learned radiance field. However, introducing hand-crafted segmentation to define regions of interest in a complex real-world scene is non-trivial and expensive as it acquires per view annotation. This paper carries out the exploration of self-supervised learning for object segmentation using NeRF for complex real-world scenes. Our framework, called NeRF with Self-supervised Object Segmentation NeRF-SOS, couples object segmentation and neural radiance field to segment objects in any view within a scene. By proposing a novel collaborative contrastive loss in both appearance and geometry levels, NeRF-SOS encourages NeRF models to distill compact geometry-aware segmentation clusters from their density fields and the self-supervised pre-trained 2D visual features. The self-supervised object segmentation framework can be applied to various NeRF models that both lead to photo-realistic rendering results and convincing segmentation maps for both indoor and outdoor scenarios. Extensive results on the LLFF, Tank & Temple, and BlendedMVS datasets validate the effectiveness of NeRF-SOS. It consistently surpasses other 2D-based self-supervised baselines and predicts finer semantics masks than existing supervised counterparts. Please refer to the video on our project page for more details: