Music generation is the task of generating music or music-like sounds from a model or algorithm.
While existing Singing Voice Synthesis systems achieve high-fidelity solo performances, they are constrained by global timbre control, failing to address dynamic multi-singer arrangement and vocal texture within a single song. To address this, we propose Tutti, a unified framework designed for structured multi-singer generation. Specifically, we introduce a Structure-Aware Singer Prompt to enable flexible singer scheduling evolving with musical structure, and propose Complementary Texture Learning via Condition-Guided VAE to capture implicit acoustic textures (e.g., spatial reverberation and spectral fusion) that are complementary to explicit controls. Experiments demonstrate that Tutti excels in precise multi-singer scheduling and significantly enhances the acoustic realism of choral generation, offering a novel paradigm for complex multi-singer arrangement. Audio samples are available at https://annoauth123-ctrl.github.io/Tutii_Demo/.
Audio is indispensable for real-world video, yet generation models have largely overlooked audio components. Current approaches to producing audio-visual content often rely on cascaded pipelines, which increase cost, accumulate errors, and degrade overall quality. While systems such as Veo 3 and Sora 2 emphasize the value of simultaneous generation, joint multimodal modeling introduces unique challenges in architecture, data, and training. Moreover, the closed-source nature of existing systems limits progress in the field. In this work, we introduce MOVA (MOSS Video and Audio), an open-source model capable of generating high-quality, synchronized audio-visual content, including realistic lip-synced speech, environment-aware sound effects, and content-aligned music. MOVA employs a Mixture-of-Experts (MoE) architecture, with a total of 32B parameters, of which 18B are active during inference. It supports IT2VA (Image-Text to Video-Audio) generation task. By releasing the model weights and code, we aim to advance research and foster a vibrant community of creators. The released codebase features comprehensive support for efficient inference, LoRA fine-tuning, and prompt enhancement.
Discrete diffusion models have emerged as a powerful paradigm for generative modeling on sequence data; however, the information-theoretic principles governing their reverse processes remain significantly less understood than those of their continuous counterparts. In this work, we bridge this gap by analyzing the reverse process dynamics through the lens of thermodynamic entropy production. We propose the entropy production rate as a rigorous proxy for quantifying information generation, deriving as a byproduct a bound on the Wasserstein distance between intermediate states and the data distribution. Leveraging these insights, we introduce two novel sampling schedules that are uniformly spaced with respect to their corresponding physics-inspired metrics: the Entropic Discrete Schedule (EDS), which is defined by maintaining a constant rate of information gain, and the Wasserstein Discrete Schedule (WDS), which is defined by taking equal steps in terms of the Wasserstein distance. We empirically demonstrate that our proposed schedules significantly outperform state-of-the-art strategies across diverse application domains, including synthetic data, music notation, vision and language modeling, consistently achieving superior performance at a lower computational budget.
While recent years have witnessed rapid progress in speech synthesis, open-source singing voice synthesis (SVS) systems still face significant barriers to industrial deployment, particularly in terms of robustness and zero-shot generalization. In this report, we introduce SoulX-Singer, a high-quality open-source SVS system designed with practical deployment considerations in mind. SoulX-Singer supports controllable singing generation conditioned on either symbolic musical scores (MIDI) or melodic representations, enabling flexible and expressive control in real-world production workflows. Trained on more than 42,000 hours of vocal data, the system supports Mandarin Chinese, English, and Cantonese and consistently achieves state-of-the-art synthesis quality across languages under diverse musical conditions. Furthermore, to enable reliable evaluation of zero-shot SVS performance in practical scenarios, we construct SoulX-Singer-Eval, a dedicated benchmark with strict training-test disentanglement, facilitating systematic assessment in zero-shot settings.
AI music generators have advanced to the point where their outputs are often indistinguishable from human compositions. While detection methods have emerged, they are typically designed and validated in music streaming contexts with clean, full-length tracks. Broadcast audio, however, poses a different challenge: music appears as short excerpts, often masked by dominant speech, conditions under which existing detectors fail. In this work, we introduce AI-OpenBMAT, the first dataset tailored to broadcast-style AI-music detection. It contains 3,294 one-minute audio excerpts (54.9 hours) that follow the duration patterns and loudness relations of real television audio, combining human-made production music with stylistically matched continuations generated with Suno v3.5. We benchmark a CNN baseline and state-of-the-art SpectTTTra models to assess SNR and duration robustness, and evaluate on a full broadcast scenario. Across all settings, models that excel in streaming scenarios suffer substantial degradation, with F1-scores dropping below 60% when music is in the background or has a short duration. These results highlight speech masking and short music length as critical open challenges for AI music detection, and position AI-OpenBMAT as a benchmark for developing detectors capable of meeting industrial broadcast requirements.
As the volume of video content on the internet grows rapidly, finding a suitable soundtrack remains a significant challenge. This thesis presents EMSYNC (EMotion and SYNChronization), a fast, free, and automatic solution that generates music tailored to the input video, enabling content creators to enhance their productions without composing or licensing music. Our model creates music that is emotionally and rhythmically synchronized with the video. A core component of EMSYNC is a novel video emotion classifier. By leveraging pretrained deep neural networks for feature extraction and keeping them frozen while training only fusion layers, we reduce computational complexity while improving accuracy. We show the generalization abilities of our method by obtaining state-of-the-art results on Ekman-6 and MovieNet. Another key contribution is a large-scale, emotion-labeled MIDI dataset for affective music generation. We then present an emotion-based MIDI generator, the first to condition on continuous emotional values rather than discrete categories, enabling nuanced music generation aligned with complex emotional content. To enhance temporal synchronization, we introduce a novel temporal boundary conditioning method, called "boundary offset encodings," aligning musical chords with scene changes. Combining video emotion classification, emotion-based music generation, and temporal boundary conditioning, EMSYNC emerges as a fully automatic video-based music generator. User studies show that it consistently outperforms existing methods in terms of music richness, emotional alignment, temporal synchronization, and overall preference, setting a new state-of-the-art in video-based music generation.
Current audio formats present a fundamental trade-off between file size and functionality: lossless formats like FLAC preserve quality but lack adaptability, while lossy formats reduce size at the cost of fidelity and offer no stem-level access.We introduce the Stem-Native Codec (SNC), a novel audio container format that stores music as independently encoded stems plus a low-energy mastering residual. By exploiting the lower information entropy of separated stems compared to mixed audio, SNC achieves a 38.2% file size reduction versus FLAC (7.76 MB vs. 12.55 MB for a 2:18 test track) while maintaining perceptual transparency (STOI = 0.996). Unlike existing formats, SNC enables context-aware adaptive playback, spatial audio rendering, and user-controlled remixing without requiring additional storage. Our experimental validation demonstrates that the stems-plus residual architecture successfully decouples the conflicting requirements of compression efficiency and feature richness, offering a practical path toward next-generation audio distribution systems.
Current audio foundation models typically rely on rigid, task-specific supervision, addressing isolated factors of audio rather than the whole. In contrast, human intelligence processes audio holistically, seamlessly bridging physical signals with abstract cognitive concepts to execute complex tasks. Grounded in this philosophy, we introduce Bagpiper, an 8B audio foundation model that interprets physical audio via rich captions, i.e., comprehensive natural language descriptions that encapsulate the critical cognitive concepts inherent in the signal (e.g., transcription, audio events). By pre-training on a massive corpus of 600B tokens, the model establishes a robust bidirectional mapping between raw audio and this high-level conceptual space. During fine-tuning, Bagpiper adopts a caption-then-process workflow, simulating an intermediate cognitive reasoning step to solve diverse tasks without task-specific priors. Experimentally, Bagpiper outperforms Qwen-2.5-Omni on MMAU and AIRBench for audio understanding and surpasses CosyVoice3 and TangoFlux in generation quality, capable of synthesizing arbitrary compositions of speech, music, and sound effects. To the best of our knowledge, Bagpiper is among the first works that achieve unified understanding generation for general audio. Model, data, and code are available at Bagpiper Home Page.
Traditional ontologies excel at describing domain structure but cannot generate novel artifacts. Large language models generate fluently but produce outputs that lack structural validity, hallucinating mechanisms without components, goals without end conditions. We introduce Generative Ontology, a framework that synthesizes these complementary strengths: ontology provides the grammar; the LLM provides the creativity. Generative Ontology encodes domain knowledge as executable Pydantic schemas that constrain LLM generation via DSPy signatures. A multi-agent pipeline assigns specialized roles to different ontology domains: a Mechanics Architect designs game systems, a Theme Weaver integrates narrative, a Balance Critic identifies exploits. Each agent carrying a professional "anxiety" that prevents shallow, agreeable outputs. Retrieval-augmented generation grounds novel designs in precedents from existing exemplars, while iterative validation ensures coherence between mechanisms and components. We demonstrate the framework through GameGrammar, a system for generating complete tabletop game designs. Given a thematic prompt ("bioluminescent fungi competing in a cave ecosystem"), the pipeline produces structurally complete, playable game specifications with mechanisms, components, victory conditions, and setup instructions. These outputs satisfy ontological constraints while remaining genuinely creative. The pattern generalizes beyond games. Any domain with expert vocabulary, validity constraints, and accumulated exemplars (music composition, software architecture, culinary arts) is a candidate for Generative Ontology. We argue that constraints do not limit creativity but enable it: just as grammar makes poetry possible, ontology makes structured generation possible.
Music captioning, or the task of generating a natural language description of music, is useful for both music understanding and controllable music generation. Training captioning models, however, typically requires high-quality music caption data which is scarce compared to metadata (e.g., genre, mood, etc.). As a result, it is common to use large language models (LLMs) to synthesize captions from metadata to generate training data for captioning models, though this process imposes a fixed stylization and entangles factual information with natural language style. As a more direct approach, we propose metadata-based captioning. We train a metadata prediction model to infer detailed music metadata from audio and then convert it into expressive captions via pre-trained LLMs at inference time. Compared to a strong end-to-end baseline trained on LLM-generated captions derived from metadata, our method: (1) achieves comparable performance in less training time over end-to-end captioners, (2) offers flexibility to easily change stylization post-training, enabling output captions to be tailored to specific stylistic and quality requirements, and (3) can be prompted with audio and partial metadata to enable powerful metadata imputation or in-filling--a common task for organizing music data.