Abstract:While existing Singing Voice Synthesis systems achieve high-fidelity solo performances, they are constrained by global timbre control, failing to address dynamic multi-singer arrangement and vocal texture within a single song. To address this, we propose Tutti, a unified framework designed for structured multi-singer generation. Specifically, we introduce a Structure-Aware Singer Prompt to enable flexible singer scheduling evolving with musical structure, and propose Complementary Texture Learning via Condition-Guided VAE to capture implicit acoustic textures (e.g., spatial reverberation and spectral fusion) that are complementary to explicit controls. Experiments demonstrate that Tutti excels in precise multi-singer scheduling and significantly enhances the acoustic realism of choral generation, offering a novel paradigm for complex multi-singer arrangement. Audio samples are available at https://annoauth123-ctrl.github.io/Tutii_Demo/.




Abstract:In recent years, deep learning has significantly advanced the MIDI domain, solidifying music generation as a key application of artificial intelligence. However, existing research primarily focuses on Western music and encounters challenges in generating melodies for Chinese traditional music, especially in capturing modal characteristics and emotional expression. To address these issues, we propose a new architecture, the Dual-Feature Modeling Module, which integrates the long-range dependency modeling of the Mamba Block with the global structure capturing capabilities of the Transformer Block. Additionally, we introduce the Bidirectional Mamba Fusion Layer, which integrates local details and global structures through bidirectional scanning, enhancing the modeling of complex sequences. Building on this architecture, we propose the REMI-M representation, which more accurately captures and generates modal information in melodies. To support this research, we developed FolkDB, a high-quality Chinese traditional music dataset encompassing various styles and totaling over 11 hours of music. Experimental results demonstrate that the proposed architecture excels in generating melodies with Chinese traditional music characteristics, offering a new and effective solution for music generation.