Models, code, and papers for "generative adversarial network":

SSGAN: Secure Steganography Based on Generative Adversarial Networks

Jul 29, 2017
Haichao Shi, Jing Dong, Wei Wang, Yinlong Qian, Xiaoyu Zhang

In this paper, a novel strategy of Secure Steganograpy based on Generative Adversarial Networks is proposed to generate suitable and secure covers for steganography. The proposed architecture has one generative network, and two discriminative networks. The generative network mainly evaluates the visual quality of the generated images for steganography, and the discriminative networks are utilized to assess their suitableness for information hiding. Different from the existing work which adopts Deep Convolutional Generative Adversarial Networks, we utilize another form of generative adversarial networks. By using this new form of generative adversarial networks, significant improvements are made on the convergence speed, the training stability and the image quality. Furthermore, a sophisticated steganalysis network is reconstructed for the discriminative network, and the network can better evaluate the performance of the generated images. Numerous experiments are conducted on the publicly available datasets to demonstrate the effectiveness and robustness of the proposed method.

  Access Model/Code and Paper
From Adversarial Training to Generative Adversarial Networks

Aug 03, 2018
Xuanqing Liu, Cho-Jui Hsieh

In this paper, we are interested in two seemingly different concepts: \textit{adversarial training} and \textit{generative adversarial networks (GANs)}. Particularly, how these techniques help to improve each other. To this end, we analyze the limitation of adversarial training as the defense method, starting from questioning how well the robustness of a model can generalize. Then, we successfully improve the generalizability via data augmentation by the "fake" images sampled from generative adversarial networks. After that, we are surprised to see that the resulting robust classifier leads to a better generator, for free. We intuitively explain this interesting phenomenon and leave the theoretical analysis for future work. Motivated by these observations, we propose a system that combines generator, discriminator, and adversarial attacker in a single network. After end-to-end training and fine tuning, our method can simultaneously improve the robustness of classifiers, measured by accuracy under strong adversarial attacks; and the quality of generators, evaluated both aesthetically and quantitatively. In terms of the classifier, we achieve better robustness than the state-of-the-art adversarial training algorithm proposed in (Madry etla., 2017), while our generator achieves competitive performance compared with SN-GAN (Miyato and Koyama, 2018). Source code is publicly available online at \url{}.

* NIPS 2018 submission, under review. v2: More experiments on comparing inception score, release code and some minor fixes 

  Access Model/Code and Paper
Generative Adversarial Trainer: Defense to Adversarial Perturbations with GAN

May 26, 2017
Hyeungill Lee, Sungyeob Han, Jungwoo Lee

We propose a novel technique to make neural network robust to adversarial examples using a generative adversarial network. We alternately train both classifier and generator networks. The generator network generates an adversarial perturbation that can easily fool the classifier network by using a gradient of each image. Simultaneously, the classifier network is trained to classify correctly both original and adversarial images generated by the generator. These procedures help the classifier network to become more robust to adversarial perturbations. Furthermore, our adversarial training framework efficiently reduces overfitting and outperforms other regularization methods such as Dropout. We applied our method to supervised learning for CIFAR datasets, and experimantal results show that our method significantly lowers the generalization error of the network. To the best of our knowledge, this is the first method which uses GAN to improve supervised learning.

  Access Model/Code and Paper
Toward Joint Image Generation and Compression using Generative Adversarial Networks

Jan 23, 2019
Byeongkeun Kang, Subarna Tripathi, Truong Q. Nguyen

In this paper, we present a generative adversarial network framework that generates compressed images instead of synthesizing raw RGB images and compressing them separately. In the real world, most images and videos are stored and transferred in a compressed format to save storage capacity and data transfer bandwidth. However, since typical generative adversarial networks generate raw RGB images, those generated images need to be compressed by a post-processing stage to reduce the data size. Among image compression methods, JPEG has been one of the most commonly used lossy compression methods for still images. Hence, we propose a novel framework that generates JPEG compressed images using generative adversarial networks. The novel generator consists of the proposed locally connected layers, chroma subsampling layers, quantization layers, residual blocks, and convolution layers. The locally connected layer is proposed to enable block-based operations. We also discuss training strategies for the proposed architecture including the loss function and the transformation between its generator and its discriminator. The proposed method is evaluated using the publicly available CIFAR-10 dataset and LSUN bedroom dataset. The results demonstrate that the proposed method is able to generate compressed data with competitive qualities. The proposed method is a promising baseline method for joint image generation and compression using generative adversarial networks.

  Access Model/Code and Paper
StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

Jun 28, 2018
Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, Dimitris Metaxas

Although Generative Adversarial Networks (GANs) have shown remarkable success in various tasks, they still face challenges in generating high quality images. In this paper, we propose Stacked Generative Adversarial Networks (StackGAN) aiming at generating high-resolution photo-realistic images. First, we propose a two-stage generative adversarial network architecture, StackGAN-v1, for text-to-image synthesis. The Stage-I GAN sketches the primitive shape and colors of the object based on given text description, yielding low-resolution images. The Stage-II GAN takes Stage-I results and text descriptions as inputs, and generates high-resolution images with photo-realistic details. Second, an advanced multi-stage generative adversarial network architecture, StackGAN-v2, is proposed for both conditional and unconditional generative tasks. Our StackGAN-v2 consists of multiple generators and discriminators in a tree-like structure; images at multiple scales corresponding to the same scene are generated from different branches of the tree. StackGAN-v2 shows more stable training behavior than StackGAN-v1 by jointly approximating multiple distributions. Extensive experiments demonstrate that the proposed stacked generative adversarial networks significantly outperform other state-of-the-art methods in generating photo-realistic images.

* In IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI), 2018. (16 pages, 15 figures.) 

  Access Model/Code and Paper
Generative Adversarial Networks with Decoder-Encoder Output Noise

Jul 11, 2018
Guoqiang Zhong, Wei Gao, Yongbin Liu, Youzhao Yang

In recent years, research on image generation methods has been developing fast. The auto-encoding variational Bayes method (VAEs) was proposed in 2013, which uses variational inference to learn a latent space from the image database and then generates images using the decoder. The generative adversarial networks (GANs) came out as a promising framework, which uses adversarial training to improve the generative ability of the generator. However, the generated pictures by GANs are generally blurry. The deep convolutional generative adversarial networks (DCGANs) were then proposed to leverage the quality of generated images. Since the input noise vectors are randomly sampled from a Gaussian distribution, the generator has to map from a whole normal distribution to the images. This makes DCGANs unable to reflect the inherent structure of the training data. In this paper, we propose a novel deep model, called generative adversarial networks with decoder-encoder output noise (DE-GANs), which takes advantage of both the adversarial training and the variational Bayesain inference to improve the performance of image generation. DE-GANs use a pre-trained decoder-encoder architecture to map the random Gaussian noise vectors to informative ones and pass them to the generator of the adversarial networks. Since the decoder-encoder architecture is trained by the same images as the generators, the output vectors could carry the intrinsic distribution information of the original images. Moreover, the loss function of DE-GANs is different from GANs and DCGANs. A hidden-space loss function is added to the adversarial loss function to enhance the robustness of the model. Extensive empirical results show that DE-GANs can accelerate the convergence of the adversarial training process and improve the quality of the generated images.

  Access Model/Code and Paper
Generating Adversarial Examples with Adversarial Networks

Jan 15, 2018
Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, Dawn Song

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

  Access Model/Code and Paper
Dihedral angle prediction using generative adversarial networks

Mar 29, 2018
Hyeongki Kim

Several dihedral angles prediction methods were developed for protein structure prediction and their other applications. However, distribution of predicted angles would not be similar to that of real angles. To address this we employed generative adversarial networks (GAN). Generative adversarial networks are composed of two adversarially trained networks: a discriminator and a generator. A discriminator distinguishes samples from a dataset and generated samples while a generator generates realistic samples. Although the discriminator of GANs is trained to estimate density, GAN model is intractable. On the other hand, noise-contrastive estimation (NCE) was introduced to estimate a normalization constant of an unnormalized statistical model and thus the density function. In this thesis, we introduce noise-contrastive estimation generative adversarial networks (NCE-GAN) which enables explicit density estimation of a GAN model. And a new loss for the generator is proposed. We also propose residue-wise variants of auxiliary classifier GAN (AC-GAN) and Semi-supervised GAN to handle sequence information in a window. In our experiment, the conditional generative adversarial network (C-GAN), AC-GAN and Semi-supervised GAN were compared. And experiments done with improved conditions were invested. We identified a phenomenon of AC-GAN that distribution of its predicted angles is composed of unusual clusters. The distribution of the predicted angles of Semi-supervised GAN was most similar to the Ramachandran plot. We found that adding the output of the NCE as an additional input of the discriminator is helpful to stabilize the training of the GANs and to capture the detailed structures. Adding regression loss and using predicted angles by regression loss only model could improve the conditional generation performance of the C-GAN and AC-GAN.

* 72 pages, MSc thesis under the supervision of Assoc. Prof. Thomas Hamelryck and Asst. Prof. Wouter Boomsma 

  Access Model/Code and Paper
Adversarial symmetric GANs: bridging adversarial samples and adversarial networks

Jan 01, 2020
Faqiang Liu, Mingkun Xu, Guoqi Li, Jing Pei, Luping Shi, Rong Zhao

Generative adversarial networks have achieved remarkable performance on various tasks but suffer from training instability. Despite many training strategies proposed to improve training stability, this issue remains as a challenge. In this paper, we investigate the training instability from the perspective of adversarial samples and reveal that adversarial training on fake samples is implemented in vanilla GANs, but adversarial training on real samples has long been overlooked. Consequently, the discriminator is extremely vulnerable to adversarial perturbation and the gradient given by the discriminator contains non-informative adversarial noises, which hinders the generator from catching the pattern of real samples. Here, we develop adversarial symmetric GANs (AS-GANs) that incorporate adversarial training of the discriminator on real samples into vanilla GANs, making adversarial training symmetrical. The discriminator is therefore more robust and provides more informative gradient with less adversarial noise, thereby stabilizing training and accelerating convergence. The effectiveness of the AS-GANs is verified on image generation on CIFAR-10 , CelebA, and LSUN with varied network architectures. Not only the training is more stabilized, but the FID scores of generated samples are consistently improved by a large margin compared to the baseline. The bridging of adversarial samples and adversarial networks provides a new approach to further develop adversarial networks.

  Access Model/Code and Paper
Autoencoders and Generative Adversarial Networks for Anomaly Detection for Sequences

Jan 15, 2019
Stephanie Ger, Diego Klabjan

We introduce synthetic oversampling in anomaly detection for multi-feature sequence datasets based on autoencoders and generative adversarial networks. The first approach considers the use of an autoencoder in conjunction with standard oversampling methods to generate synthetic data that captures the sequential nature of the data. A different model uses generative adversarial networks to generate structure preserving synthetic data for the minority class. We also use generative adversarial networks on the majority class as an outlier detection method for novelty detection. We show that the use of generative adversarial network based synthetic data improves classification model performance on a variety of sequence data sets.

  Access Model/Code and Paper
Generative Adversarial Mapping Networks

Sep 28, 2017
Jianbo Guo, Guangxiang Zhu, Jian Li

Generative Adversarial Networks (GANs) have shown impressive performance in generating photo-realistic images. They fit generative models by minimizing certain distance measure between the real image distribution and the generated data distribution. Several distance measures have been used, such as Jensen-Shannon divergence, $f$-divergence, and Wasserstein distance, and choosing an appropriate distance measure is very important for training the generative network. In this paper, we choose to use the maximum mean discrepancy (MMD) as the distance metric, which has several nice theoretical guarantees. In fact, generative moment matching network (GMMN) (Li, Swersky, and Zemel 2015) is such a generative model which contains only one generator network $G$ trained by directly minimizing MMD between the real and generated distributions. However, it fails to generate meaningful samples on challenging benchmark datasets, such as CIFAR-10 and LSUN. To improve on GMMN, we propose to add an extra network $F$, called mapper. $F$ maps both real data distribution and generated data distribution from the original data space to a feature representation space $\mathcal{R}$, and it is trained to maximize MMD between the two mapped distributions in $\mathcal{R}$, while the generator $G$ tries to minimize the MMD. We call the new model generative adversarial mapping networks (GAMNs). We demonstrate that the adversarial mapper $F$ can help $G$ to better capture the underlying data distribution. We also show that GAMN significantly outperforms GMMN, and is also superior to or comparable with other state-of-the-art GAN based methods on MNIST, CIFAR-10 and LSUN-Bedrooms datasets.

* 9 pages, 7 figures 

  Access Model/Code and Paper
Anomaly Generation using Generative Adversarial Networks in Host Based Intrusion Detection

Dec 11, 2018
Milad Salem, Shayan Taheri, Jiann Shiun Yuan

Generative adversarial networks have been able to generate striking results in various domains. This generation capability can be general while the networks gain deep understanding regarding the data distribution. In many domains, this data distribution consists of anomalies and normal data, with the anomalies commonly occurring relatively less, creating datasets that are imbalanced. The capabilities that generative adversarial networks offer can be leveraged to examine these anomalies and help alleviate the challenge that imbalanced datasets propose via creating synthetic anomalies. This anomaly generation can be specifically beneficial in domains that have costly data creation processes as well as inherently imbalanced datasets. One of the domains that fits this description is the host-based intrusion detection domain. In this work, ADFA-LD dataset is chosen as the dataset of interest containing system calls of small foot-print next generation attacks. The data is first converted into images, and then a Cycle-GAN is used to create images of anomalous data from images of normal data. The generated data is combined with the original dataset and is used to train a model to detect anomalies. By doing so, it is shown that the classification results are improved, with the AUC rising from 0.55 to 0.71, and the anomaly detection rate rising from 17.07% to 80.49%. The results are also compared to SMOTE, showing the potential presented by generative adversarial networks in anomaly generation.

* Accepted and presented at IEEE Annual Ubiquitous Computing, Electronics, and Mobile Communications Conference (IEEE UEMCON) on 8th-10th November 2018 

  Access Model/Code and Paper
Quantum generative adversarial networks

Apr 30, 2018
Pierre-Luc Dallaire-Demers, Nathan Killoran

Quantum machine learning is expected to be one of the first potential general-purpose applications of near-term quantum devices. A major recent breakthrough in classical machine learning is the notion of generative adversarial training, where the gradients of a discriminator model are used to train a separate generative model. In this work and a companion paper, we extend adversarial training to the quantum domain and show how to construct generative adversarial networks using quantum circuits. Furthermore, we also show how to compute gradients -- a key element in generative adversarial network training -- using another quantum circuit. We give an example of a simple practical circuit ansatz to parametrize quantum machine learning models and perform a simple numerical experiment to demonstrate that quantum generative adversarial networks can be trained successfully.

* Phys. Rev. A 98, 012324 (2018) 
* 10 pages, 8 figures 

  Access Model/Code and Paper
Lung image segmentation by generative adversarial networks

Jul 30, 2019
Jiaxin Cai, Hongfeng Zhu

Lung image segmentation plays an important role in computer-aid pulmonary diseases diagnosis and treatment. This paper proposed a lung image segmentation method by generative adversarial networks. We employed a variety of generative adversarial networks and use its capability of image translation to perform image segmentation. The generative adversarial networks was employed to translate the original lung image to the segmented image. The generative adversarial networks based segmentation method was test on real lung image data set. Experimental results shows that the proposed method is effective and outperform state-of-the art method.

  Access Model/Code and Paper
Generative Adversarial Network for Handwritten Text

Jul 30, 2019
Bo Ji, Tianyi Chen

Generative adversarial networks (GANs) have proven hugely successful in variety of applications of image processing. However, generative adversarial networks for handwriting is relatively rare somehow because of difficulty of handling sequential handwriting data by Convolutional Neural Network (CNN). In this paper, we propose a handwriting generative adversarial network framework (HWGANs) for synthesizing handwritten stroke data. The main features of the new framework include: (i) A discriminator consists of an integrated CNN-Long-Short-Term- Memory (LSTM) based feature extraction with Path Signature Features (PSF) as input and a Feedforward Neural Network (FNN) based binary classifier; (ii) A recurrent latent variable model as generator for synthesizing sequential handwritten data. The numerical experiments show the effectivity of the new model. Moreover, comparing with sole handwriting generator, the HWGANs synthesize more natural and realistic handwritten text.

* 12 pages, 7 figures, submitted for WACV 2020 

  Access Model/Code and Paper
Style Separation and Synthesis via Generative Adversarial Networks

Nov 07, 2018
Rui Zhang, Sheng Tang, Yu Li, Junbo Guo, Yongdong Zhang, Jintao Li, Shuicheng Yan

Style synthesis attracts great interests recently, while few works focus on its dual problem "style separation". In this paper, we propose the Style Separation and Synthesis Generative Adversarial Network (S3-GAN) to simultaneously implement style separation and style synthesis on object photographs of specific categories. Based on the assumption that the object photographs lie on a manifold, and the contents and styles are independent, we employ S3-GAN to build mappings between the manifold and a latent vector space for separating and synthesizing the contents and styles. The S3-GAN consists of an encoder network, a generator network, and an adversarial network. The encoder network performs style separation by mapping an object photograph to a latent vector. Two halves of the latent vector represent the content and style, respectively. The generator network performs style synthesis by taking a concatenated vector as input. The concatenated vector contains the style half vector of the style target image and the content half vector of the content target image. Once obtaining the images from the generator network, an adversarial network is imposed to generate more photo-realistic images. Experiments on CelebA and UT Zappos 50K datasets demonstrate that the S3-GAN has the capacity of style separation and synthesis simultaneously, and could capture various styles in a single model.

* The 26th ACM international conference on Multimedia (ACM MM), 2018, pp. 183-191 

  Access Model/Code and Paper
Pseudo-Random Number Generation using Generative Adversarial Networks

Sep 30, 2018
Marcello De Bernardi, MHR Khouzani, Pasquale Malacaria

Pseudo-random number generators (PRNG) are a fundamental element of many security algorithms. We introduce a novel approach to their implementation, by proposing the use of generative adversarial networks (GAN) to train a neural network to behave as a PRNG. Furthermore, we showcase a number of interesting modifications to the standard GAN architecture. The most significant is partially concealing the output of the GAN's generator, and training the adversary to discover a mapping from the overt part to the concealed part. The generator therefore learns to produce values the adversary cannot predict, rather than to approximate an explicit reference distribution. We demonstrate that a GAN can effectively train even a small feed-forward fully connected neural network to produce pseudo-random number sequences with good statistical properties. At best, subjected to the NIST test suite, the trained generator passed around 99% of test instances and 98% of overall tests, outperforming a number of standard non-cryptographic PRNGs.

  Access Model/Code and Paper
Sinusoidal wave generating network based on adversarial learning and its application: synthesizing frog sounds for data augmentation

Jan 07, 2019
Sangwook Park, David K. Han, Hanseok Ko

Simulators that generate observations based on theoretical models can be important tools for development, prediction, and assessment of signal processing algorithms. In order to design these simulators, painstaking effort is required to construct mathematical models according to their application. Complex models are sometimes necessary to represent a variety of real phenomena. In contrast, obtaining synthetic observations from generative models developed from real observations often require much less effort. This paper proposes a generative model based on adversarial learning. Given that observations are typically signals composed of a linear combination of sinusoidal waves and random noises, sinusoidal wave generating networks are first designed based on an adversarial network. Audio waveform generation can then be performed using the proposed network. Several approaches to designing the objective function of the proposed network using adversarial learning are investigated experimentally. In addition, amphibian sound classification is performed using a convolutional neural network trained with real and synthetic sounds. Both qualitative and quantitative results show that the proposed generative model makes realistic signals and is very helpful for data augmentation and data analysis.

* This paper has been revised from our previous manuscripts as following reviewer's comments in ICML, NIP, and IEEE TSP 

  Access Model/Code and Paper
Evolutionary Generative Adversarial Networks

Mar 01, 2018
Chaoyue Wang, Chang Xu, Xin Yao, Dacheng Tao

Generative adversarial networks (GAN) have been effective for learning generative models for real-world data. However, existing GANs (GAN and its variants) tend to suffer from training problems such as instability and mode collapse. In this paper, we propose a novel GAN framework called evolutionary generative adversarial networks (E-GAN) for stable GAN training and improved generative performance. Unlike existing GANs, which employ a pre-defined adversarial objective function alternately training a generator and a discriminator, we utilize different adversarial training objectives as mutation operations and evolve a population of generators to adapt to the environment (i.e., the discriminator). We also utilize an evaluation mechanism to measure the quality and diversity of generated samples, such that only well-performing generator(s) are preserved and used for further training. In this way, E-GAN overcomes the limitations of an individual adversarial training objective and always preserves the best offspring, contributing to progress in and the success of GANs. Experiments on several datasets demonstrate that E-GAN achieves convincing generative performance and reduces the training problems inherent in existing GANs.

* 14 pages, 8 figures 

  Access Model/Code and Paper
Generating Realistic Unrestricted Adversarial Inputs using Dual-Objective GAN Training

May 07, 2019
Isaac Dunn, Tom Melham, Daniel Kroening

The correctness of deep neural networks is well-known to be vulnerable to small, 'adversarial' perturbations of their inputs. Although studying these attacks is valuable, they do not necessarily conform to any real-world threat model. This has led to interest in the generation of (and robustness to) unrestricted adversarial inputs, which are not constructed as small perturbations of correctly-classified ground-truth inputs. We introduce a novel algorithm to generate realistic unrestricted adversarial inputs, in the sense that they cannot reliably be distinguished from the training dataset by a human. This is achieved by modifying generative adversarial networks: a generator neural network is trained to construct examples that deceive a fixed target network (so they are adversarial) while also deceiving the usual co-training discriminator network (so they are realistic). Our approach is demonstrated by the generation of unrestricted adversarial inputs for a trained image classifier that is robust to perturbation-based attacks. We find that human judges are unable to identify which image out of ten was generated by our method about 50 percent of the time, providing evidence that they are moderately realistic.

  Access Model/Code and Paper