Abstract:Physical adversarial attack methods expose the vulnerabilities of deep neural networks and pose a significant threat to safety-critical scenarios such as autonomous driving. Camouflage-based physical attack is a more promising approach compared to the patch-based attack, offering stronger adversarial effectiveness in complex physical environments. However, most prior work relies on mesh priors of the target object and virtual environments constructed by simulators, which are time-consuming to obtain and inevitably differ from the real world. Moreover, due to the limitations of the backgrounds in training images, previous methods often fail to produce multi-view robust adversarial camouflage and tend to fall into sub-optimal solutions. Due to these reasons, prior work lacks adversarial effectiveness and robustness across diverse viewpoints and physical environments. We propose a physical attack framework based on 3D Gaussian Splatting (3DGS), named PGA, which provides rapid and precise reconstruction with few images, along with photo-realistic rendering capabilities. Our framework further enhances cross-view robustness and adversarial effectiveness by preventing mutual and self-occlusion among Gaussians and employing a min-max optimization approach that adjusts the imaging background of each viewpoint, helping the algorithm filter out non-robust adversarial features. Extensive experiments validate the effectiveness and superiority of PGA. Our code is available at:https://github.com/TRLou/PGA.
Abstract:Adversarial attack methods based on point manipulation for 3D point cloud classification have revealed the fragility of 3D models, yet the adversarial examples they produce are easily perceived or defended against. The trade-off between the imperceptibility and adversarial strength leads most point attack methods to inevitably introduce easily detectable outlier points upon a successful attack. Another promising strategy, shape-based attack, can effectively eliminate outliers, but existing methods often suffer significant reductions in imperceptibility due to irrational deformations. We find that concealing deformation perturbations in areas insensitive to human eyes can achieve a better trade-off between imperceptibility and adversarial strength, specifically in parts of the object surface that are complex and exhibit drastic curvature changes. Therefore, we propose a novel shape-based adversarial attack method, HiT-ADV, which initially conducts a two-stage search for attack regions based on saliency and imperceptibility scores, and then adds deformation perturbations in each attack region using Gaussian kernel functions. Additionally, HiT-ADV is extendable to physical attack. We propose that by employing benign resampling and benign rigid transformations, we can further enhance physical adversarial strength with little sacrifice to imperceptibility. Extensive experiments have validated the superiority of our method in terms of adversarial and imperceptible properties in both digital and physical spaces. Our code is avaliable at: https://github.com/TRLou/HiT-ADV.
Abstract:Current Visual-Language Pre-training (VLP) models are vulnerable to adversarial examples. These adversarial examples present substantial security risks to VLP models, as they can leverage inherent weaknesses in the models, resulting in incorrect predictions. In contrast to white-box adversarial attacks, transfer attacks (where the adversary crafts adversarial examples on a white-box model to fool another black-box model) are more reflective of real-world scenarios, thus making them more meaningful for research. By summarizing and analyzing existing research, we identified two factors that can influence the efficacy of transfer attacks on VLP models: inter-modal interaction and data diversity. Based on these insights, we propose a self-augment-based transfer attack method, termed SA-Attack. Specifically, during the generation of adversarial images and adversarial texts, we apply different data augmentation methods to the image modality and text modality, respectively, with the aim of improving the adversarial transferability of the generated adversarial images and texts. Experiments conducted on the FLickr30K and COCO datasets have validated the effectiveness of our method. Our code will be available after this paper is accepted.