Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Time Series Analysis": models, code, and papers

Real-Time Prediction of BITCOIN Price using Machine Learning Techniques and Public Sentiment Analysis

Jun 18, 2020
S M Raju, Ali Mohammad Tarif

Bitcoin is the first digital decentralized cryptocurrency that has shown a significant increase in market capitalization in recent years. The objective of this paper is to determine the predictable price direction of Bitcoin in USD by machine learning techniques and sentiment analysis. Twitter and Reddit have attracted a great deal of attention from researchers to study public sentiment. We have applied sentiment analysis and supervised machine learning principles to the extracted tweets from Twitter and Reddit posts, and we analyze the correlation between bitcoin price movements and sentiments in tweets. We explored several algorithms of machine learning using supervised learning to develop a prediction model and provide informative analysis of future market prices. Due to the difficulty of evaluating the exact nature of a Time Series(ARIMA) model, it is often very difficult to produce appropriate forecasts. Then we continue to implement Recurrent Neural Networks (RNN) with long short-term memory cells (LSTM). Thus, we analyzed the time series model prediction of bitcoin prices with greater efficiency using long short-term memory (LSTM) techniques and compared the predictability of bitcoin price and sentiment analysis of bitcoin tweets to the standard method (ARIMA). The RMSE (Root-mean-square error) of LSTM are 198.448 (single feature) and 197.515 (multi-feature) whereas the ARIMA model RMSE is 209.263 which shows that LSTM with multi feature shows the more accurate result.

* 14 pages, 8 figures, 2 tables 
Access Paper or Ask Questions

Markov Modeling of Time-Series Data using Symbolic Analysis

Mar 23, 2021
Devesh K. Jha

Markov models are often used to capture the temporal patterns of sequential data for statistical learning applications. While the Hidden Markov modeling-based learning mechanisms are well studied in literature, we analyze a symbolic-dynamics inspired approach. Under this umbrella, Markov modeling of time-series data consists of two major steps -- discretization of continuous attributes followed by estimating the size of temporal memory of the discretized sequence. These two steps are critical for the accurate and concise representation of time-series data in the discrete space. Discretization governs the information content of the resultant discretized sequence. On the other hand, memory estimation of the symbolic sequence helps to extract the predictive patterns in the discretized data. Clearly, the effectiveness of signal representation as a discrete Markov process depends on both these steps. In this paper, we will review the different techniques for discretization and memory estimation for discrete stochastic processes. In particular, we will focus on the individual problems of discretization and order estimation for discrete stochastic process. We will present some results from literature on partitioning from dynamical systems theory and order estimation using concepts of information theory and statistical learning. The paper also presents some related problem formulations which will be useful for machine learning and statistical learning application using the symbolic framework of data analysis. We present some results of statistical analysis of a complex thermoacoustic instability phenomenon during lean-premixed combustion in jet-turbine engines using the proposed Markov modeling method.

Access Paper or Ask Questions

Prediction of gene expression time series and structural analysis of gene regulatory networks using recurrent neural networks

Sep 13, 2021
Michele Monti, Jonathan Fiorentino, Edoardo Milanetti, Giorgio Gosti, Gian Gaetano Tartaglia

Methods for time series prediction and classification of gene regulatory networks (GRNs) from gene expression data have been treated separately so far. The recent emergence of attention-based recurrent neural networks (RNN) models boosted the interpretability of RNN parameters, making them appealing for the understanding of gene interactions. In this work, we generated synthetic time series gene expression data from a range of archetypal GRNs and we relied on a dual attention RNN to predict the gene temporal dynamics. We show that the prediction is extremely accurate for GRNs with different architectures. Next, we focused on the attention mechanism of the RNN and, using tools from graph theory, we found that its graph properties allow to hierarchically distinguish different architectures of the GRN. We show that the GRNs respond differently to the addition of noise in the prediction by the RNN and we relate the noise response to the analysis of the attention mechanism. In conclusion, this work provides a a way to understand and exploit the attention mechanism of RNN and it paves the way to RNN-based methods for time series prediction and inference of GRNs from gene expression data.

* 17 pages, 6 figures 
Access Paper or Ask Questions

Detecting and Explaining Causes From Text For a Time Series Event

Jul 27, 2017
Dongyeop Kang, Varun Gangal, Ang Lu, Zheng Chen, Eduard Hovy

Explaining underlying causes or effects about events is a challenging but valuable task. We define a novel problem of generating explanations of a time series event by (1) searching cause and effect relationships of the time series with textual data and (2) constructing a connecting chain between them to generate an explanation. To detect causal features from text, we propose a novel method based on the Granger causality of time series between features extracted from text such as N-grams, topics, sentiments, and their composition. The generation of the sequence of causal entities requires a commonsense causative knowledge base with efficient reasoning. To ensure good interpretability and appropriate lexical usage we combine symbolic and neural representations, using a neural reasoning algorithm trained on commonsense causal tuples to predict the next cause step. Our quantitative and human analysis show empirical evidence that our method successfully extracts meaningful causality relationships between time series with textual features and generates appropriate explanation between them.

* Accepted at EMNLP 2017 
Access Paper or Ask Questions

Functional Classwise Principal Component Analysis: A Novel Classification Framework

Jun 26, 2021
Avishek Chatterjee, Satyaki Mazumder, Koel Das

In recent times, functional data analysis (FDA) has been successfully applied in the field of high dimensional data classification. In this paper, we present a novel classification framework using functional data and classwise Principal Component Analysis (PCA). Our proposed method can be used in high dimensional time series data which typically suffers from small sample size problem. Our method extracts a piece wise linear functional feature space and is particularly suitable for hard classification problems.The proposed framework converts time series data into functional data and uses classwise functional PCA for feature extraction followed by classification using a Bayesian linear classifier. We demonstrate the efficacy of our proposed method by applying it to both synthetic data sets and real time series data from diverse fields including but not limited to neuroscience, food science, medical sciences and chemometrics.

Access Paper or Ask Questions

Pattern Discovery in Time Series with Byte Pair Encoding

May 30, 2021
Nazgol Tavabi, Kristina Lerman

The growing popularity of wearable sensors has generated large quantities of temporal physiological and activity data. Ability to analyze this data offers new opportunities for real-time health monitoring and forecasting. However, temporal physiological data presents many analytic challenges: the data is noisy, contains many missing values, and each series has a different length. Most methods proposed for time series analysis and classification do not handle datasets with these characteristics nor do they offer interpretability and explainability, a critical requirement in the health domain. We propose an unsupervised method for learning representations of time series based on common patterns identified within them. The patterns are, interpretable, variable in length, and extracted using Byte Pair Encoding compression technique. In this way the method can capture both long-term and short-term dependencies present in the data. We show that this method applies to both univariate and multivariate time series and beats state-of-the-art approaches on a real world dataset collected from wearable sensors.

Access Paper or Ask Questions

Transfer Learning for Clinical Time Series Analysis using Deep Neural Networks

Apr 01, 2019
Priyanka Gupta, Pankaj Malhotra, Jyoti Narwariya, Lovekesh Vig, Gautam Shroff

Deep neural networks have shown promising results for various clinical prediction tasks. However, training deep networks such as those based on Recurrent Neural Networks (RNNs) requires large labeled data, significant hyper-parameter tuning effort and expertise, and high computational resources. In this work, we investigate as to what extent can transfer learning address these issues when using deep RNNs to model multivariate clinical time series. We consider two scenarios for transfer learning using RNNs: i) domain-adaptation, i.e., leveraging a deep RNN - namely, TimeNet - pre-trained for feature extraction on time series from diverse domains, and adapting it for feature extraction and subsequent target tasks in healthcare domain, ii) task-adaptation, i.e., pre-training a deep RNN - namely, HealthNet - on diverse tasks in healthcare domain, and adapting it to new target tasks in the same domain. We evaluate the above approaches on publicly available MIMIC-III benchmark dataset, and demonstrate that (a) computationally-efficient linear models trained using features extracted via pre-trained RNNs outperform or, in the worst case, perform as well as deep RNNs and statistical hand-crafted features based models trained specifically for target task; (b) models obtained by adapting pre-trained models for target tasks are significantly more robust to the size of labeled data compared to task-specific RNNs, while also being computationally efficient. We, therefore, conclude that pre-trained deep models like TimeNet and HealthNet allow leveraging the advantages of deep learning for clinical time series analysis tasks, while also minimize dependence on hand-crafted features, deal robustly with scarce labeled training data scenarios without overfitting, as well as reduce dependence on expertise and resources required to train deep networks from scratch.

Access Paper or Ask Questions

Robust Parameter-Free Season Length Detection in Time Series

Nov 14, 2019
Maximilian Toller, Roman Kern

The in-depth analysis of time series has gained a lot of research interest in recent years, with the identification of periodic patterns being one important aspect. Many of the methods for identifying periodic patterns require time series' season length as input parameter. There exist only a few algorithms for automatic season length approximation. Many of these rely on simplifications such as data discretization and user defined parameters. This paper presents an algorithm for season length detection that is designed to be sufficiently reliable to be used in practical applications and does not require any input other than the time series to be analyzed. The algorithm estimates a time series' season length by interpolating, filtering and detrending the data. This is followed by analyzing the distances between zeros in the directly corresponding autocorrelation function. Our algorithm was tested against a comparable algorithm and outperformed it by passing 122 out of 165 tests, while the existing algorithm passed 83 tests. The robustness of our method can be jointly attributed to both the algorithmic approach and also to design decisions taken at the implementational level.

* MileTS 2017 
Access Paper or Ask Questions

Comparison of Traditional and Hybrid Time Series Models for Forecasting COVID-19 Cases

May 05, 2021
Samyak Prajapati, Aman Swaraj, Ronak Lalwani, Akhil Narwal, Karan Verma, Ghanshyam Singh, Ashok Kumar

Time series forecasting methods play critical role in estimating the spread of an epidemic. The coronavirus outbreak of December 2019 has already infected millions all over the world and continues to spread on. Just when the curve of the outbreak had started to flatten, many countries have again started to witness a rise in cases which is now being referred as the 2nd wave of the pandemic. A thorough analysis of time-series forecasting models is therefore required to equip state authorities and health officials with immediate strategies for future times. This aims of the study are three-fold: (a) To model the overall trend of the spread; (b) To generate a short-term forecast of 10 days in countries with the highest incidence of confirmed cases (USA, India and Brazil); (c) To quantitatively determine the algorithm that is best suited for precise modelling of the linear and non-linear features of the time series. The comparison of forecasting models for the total cumulative cases of each country is carried out by comparing the reported data and the predicted value, and then ranking the algorithms (Prophet, Holt-Winters, LSTM, ARIMA, and ARIMA-NARNN) based on their RMSE, MAE and MAPE values. The hybrid combination of ARIMA and NARNN (Nonlinear Auto-Regression Neural Network) gave the best result among the selected models with a reduced RMSE, which proved to be almost 35.3% better than one of the most prevalent method of time-series prediction (ARIMA). The results demonstrated the efficacy of the hybrid implementation of the ARIMA-NARNN model over other forecasting methods such as Prophet, Holt Winters, LSTM, and the ARIMA model in encapsulating the linear as well as non-linear patterns of the epidemical datasets.

Access Paper or Ask Questions

Self-supervised learning for fast and scalable time series hyper-parameter tuning

Feb 10, 2021
Peiyi Zhang, Xiaodong Jiang, Ginger M Holt, Nikolay Pavlovich Laptev, Caner Komurlu, Peng Gao, Yang Yu

Hyper-parameters of time series models play an important role in time series analysis. Slight differences in hyper-parameters might lead to very different forecast results for a given model, and therefore, selecting good hyper-parameter values is indispensable. Most of the existing generic hyper-parameter tuning methods, such as Grid Search, Random Search, Bayesian Optimal Search, are based on one key component - search, and thus they are computationally expensive and cannot be applied to fast and scalable time-series hyper-parameter tuning (HPT). We propose a self-supervised learning framework for HPT (SSL-HPT), which uses time series features as inputs and produces optimal hyper-parameters. SSL-HPT algorithm is 6-20x faster at getting hyper-parameters compared to other search based algorithms while producing comparable accurate forecasting results in various applications.

Access Paper or Ask Questions