What is Recommendation? Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Papers and Code
May 29, 2025
Abstract:Recent works of music representation learning mainly focus on learning acoustic music representations with unlabeled audios or further attempt to acquire multi-modal music representations with scarce annotated audio-text pairs. They either ignore the language semantics or rely on labeled audio datasets that are difficult and expensive to create. Moreover, merely modeling semantic space usually fails to achieve satisfactory performance on music recommendation tasks since the user preference space is ignored. In this paper, we propose a novel Hierarchical Two-stage Contrastive Learning (HTCL) method that models similarity from the semantic perspective to the user perspective hierarchically to learn a comprehensive music representation bridging the gap between semantic and user preference spaces. We devise a scalable audio encoder and leverage a pre-trained BERT model as the text encoder to learn audio-text semantics via large-scale contrastive pre-training. Further, we explore a simple yet effective way to exploit interaction data from our online music platform to adapt the semantic space to user preference space via contrastive fine-tuning, which differs from previous works that follow the idea of collaborative filtering. As a result, we obtain a powerful audio encoder that not only distills language semantics from the text encoder but also models similarity in user preference space with the integrity of semantic space preserved. Experimental results on both music semantic and recommendation tasks confirm the effectiveness of our method.
* ICMR 2025
Via

May 29, 2025
Abstract:With the increasing integration of visual and textual content in Social Networking Services (SNS), evaluating the multimodal capabilities of Large Language Models (LLMs) is crucial for enhancing user experience, content understanding, and platform intelligence. Existing benchmarks primarily focus on text-centric tasks, lacking coverage of the multimodal contexts prevalent in modern SNS ecosystems. In this paper, we introduce SNS-Bench-VL, a comprehensive multimodal benchmark designed to assess the performance of Vision-Language LLMs in real-world social media scenarios. SNS-Bench-VL incorporates images and text across 8 multimodal tasks, including note comprehension, user engagement analysis, information retrieval, and personalized recommendation. It comprises 4,001 carefully curated multimodal question-answer pairs, covering single-choice, multiple-choice, and open-ended tasks. We evaluate over 25 state-of-the-art multimodal LLMs, analyzing their performance across tasks. Our findings highlight persistent challenges in multimodal social context comprehension. We hope SNS-Bench-VL will inspire future research towards robust, context-aware, and human-aligned multimodal intelligence for next-generation social networking services.
Via

May 28, 2025
Abstract:Systematic reviews (SR), in which experts summarize and analyze evidence across individual studies to provide insights on a specialized topic, are a cornerstone for evidence-based clinical decision-making, research, and policy. Given the exponential growth of scientific articles, there is growing interest in using large language models (LLMs) to automate SR generation. However, the ability of LLMs to critically assess evidence and reason across multiple documents to provide recommendations at the same proficiency as domain experts remains poorly characterized. We therefore ask: Can LLMs match the conclusions of systematic reviews written by clinical experts when given access to the same studies? To explore this question, we present MedEvidence, a benchmark pairing findings from 100 SRs with the studies they are based on. We benchmark 24 LLMs on MedEvidence, including reasoning, non-reasoning, medical specialist, and models across varying sizes (from 7B-700B). Through our systematic evaluation, we find that reasoning does not necessarily improve performance, larger models do not consistently yield greater gains, and knowledge-based fine-tuning degrades accuracy on MedEvidence. Instead, most models exhibit similar behavior: performance tends to degrade as token length increases, their responses show overconfidence, and, contrary to human experts, all models show a lack of scientific skepticism toward low-quality findings. These results suggest that more work is still required before LLMs can reliably match the observations from expert-conducted SRs, even though these systems are already deployed and being used by clinicians. We release our codebase and benchmark to the broader research community to further investigate LLM-based SR systems.
Via

May 28, 2025
Abstract:Co-branding has become a vital strategy for businesses aiming to expand market reach within recommendation systems. However, identifying effective cross-industry partnerships remains challenging due to resource imbalances, uncertain brand willingness, and ever-changing market conditions. In this paper, we provide the first systematic study of this problem and propose a unified online-offline framework to enable co-branding recommendations. Our approach begins by constructing a bipartite graph linking ``initiating'' and ``target'' brands to quantify co-branding probabilities and assess market benefits. During the online learning phase, we dynamically update the graph in response to market feedback, while striking a balance between exploring new collaborations for long-term gains and exploiting established partnerships for immediate benefits. To address the high initial co-branding costs, our framework mitigates redundant exploration, thereby enhancing short-term performance while ensuring sustainable strategic growth. In the offline optimization phase, our framework consolidates the interests of multiple sub-brands under the same parent brand to maximize overall returns, avoid excessive investment in single sub-brands, and reduce unnecessary costs associated with over-prioritizing a single sub-brand. We present a theoretical analysis of our approach, establishing a highly nontrivial sublinear regret bound for online learning in the complex co-branding problem, and enhancing the approximation guarantee for the NP-hard offline budget allocation optimization. Experiments on both synthetic and real-world co-branding datasets demonstrate the practical effectiveness of our framework, with at least 12\% improvement.
* Accepted at the 31st ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2025
Via

May 28, 2025
Abstract:We present Yambda-5B, a large-scale open dataset sourced from the Yandex.Music streaming platform. Yambda-5B contains 4.79 billion user-item interactions from 1 million users across 9.39 million tracks. The dataset includes two primary types of interactions: implicit feedback (listening events) and explicit feedback (likes, dislikes, unlikes and undislikes). In addition, we provide audio embeddings for most tracks, generated by a convolutional neural network trained on audio spectrograms. A key distinguishing feature of Yambda-5B is the inclusion of the is_organic flag, which separates organic user actions from recommendation-driven events. This distinction is critical for developing and evaluating machine learning algorithms, as Yandex.Music relies on recommender systems to personalize track selection for users. To support rigorous benchmarking, we introduce an evaluation protocol based on a Global Temporal Split, allowing recommendation algorithms to be assessed in conditions that closely mirror real-world use. We report benchmark results for standard baselines (ItemKNN, iALS) and advanced models (SANSA, SASRec) using a variety of evaluation metrics. By releasing Yambda-5B to the community, we aim to provide a readily accessible, industrial-scale resource to advance research, foster innovation, and promote reproducible results in recommender systems.
Via

May 28, 2025
Abstract:AI copilots, context-aware, AI-powered systems designed to assist users in tasks such as software development and content creation, are becoming integral to modern workflows. As these systems grow in capability and adoption, personalization has emerged as a cornerstone for ensuring usability, trust, and productivity. Central to this personalization is preference optimization: the ability of AI copilots to detect, interpret, and align with individual user preferences. While personalization techniques are well-established in domains like recommender systems and dialogue agents, their adaptation to interactive, real-time systems like AI copilots remains fragmented and underexplored. This survey addresses this gap by synthesizing research on how user preferences are captured, modeled, and refined within the design of AI copilots. We introduce a unified definition of AI copilots and propose a phase-based taxonomy of preference optimization strategies, structured around pre-interaction, mid-interaction, and post-interaction stages. We analyze techniques for acquiring preference signals, modeling user intent, and integrating feedback loops, highlighting both established approaches and recent innovations. By bridging insights from AI personalization, human-AI collaboration, and large language model adaptation, this survey provides a structured foundation for designing adaptive, preference-aware AI copilots. It offers a holistic view of the available preference resources, how they can be leveraged, and which technical approaches are most suited to each stage of system design.
Via

May 28, 2025
Abstract:Recommender systems often suffer from noisy interactions like accidental clicks or popularity bias. Existing denoising methods typically identify users' intent in their interactions, and filter out noisy interactions that deviate from the assumed intent. However, they ignore that interactions deemed noisy could still aid model training, while some ``clean'' interactions offer little learning value. To bridge this gap, we propose Shapley Value-driven Valuation (SVV), a framework that evaluates interactions based on their objective impact on model training rather than subjective intent assumptions. In SVV, a real-time Shapley value estimation method is devised to quantify each interaction's value based on its contribution to reducing training loss. Afterward, SVV highlights the interactions with high values while downplaying low ones to achieve effective data pruning for recommender systems. In addition, we develop a simulated noise protocol to examine the performance of various denoising approaches systematically. Experiments on four real-world datasets show that SVV outperforms existing denoising methods in both accuracy and robustness. Further analysis also demonstrates that our SVV can preserve training-critical interactions and offer interpretable noise assessment. This work shifts denoising from heuristic filtering to principled, model-driven interaction valuation.
* In SIGKDD (2025), 10 pages
Via

May 28, 2025
Abstract:Scientific research heavily depends on suitable datasets for method validation, but existing academic platforms with dataset management like PapersWithCode suffer from inefficiencies in their manual workflow. To overcome this bottleneck, we present a system, called ChatPD, that utilizes Large Language Models (LLMs) to automate dataset information extraction from academic papers and construct a structured paper-dataset network. Our system consists of three key modules: \textit{paper collection}, \textit{dataset information extraction}, and \textit{dataset entity resolution} to construct paper-dataset networks. Specifically, we propose a \textit{Graph Completion and Inference} strategy to map dataset descriptions to their corresponding entities. Through extensive experiments, we demonstrate that ChatPD not only outperforms the existing platform PapersWithCode in dataset usage extraction but also achieves about 90\% precision and recall in entity resolution tasks. Moreover, we have deployed ChatPD to continuously extract which datasets are used in papers, and provide a dataset discovery service, such as task-specific dataset queries and similar dataset recommendations. We open source ChatPD and the current paper-dataset network on this [GitHub repository]{https://github.com/ChatPD-web/ChatPD}.
* Accepted by KDD Applied Data Science Track 2025
Via

May 28, 2025
Abstract:Ensuring robust and generalizable autonomous driving requires not only broad scenario coverage but also efficient repair of failure cases, particularly those related to challenging and safety-critical scenarios. However, existing scenario generation and selection methods often lack adaptivity and semantic relevance, limiting their impact on performance improvement. In this paper, we propose \textbf{SERA}, an LLM-powered framework that enables autonomous driving systems to self-evolve by repairing failure cases through targeted scenario recommendation. By analyzing performance logs, SERA identifies failure patterns and dynamically retrieves semantically aligned scenarios from a structured bank. An LLM-based reflection mechanism further refines these recommendations to maximize relevance and diversity. The selected scenarios are used for few-shot fine-tuning, enabling targeted adaptation with minimal data. Experiments on the benchmark show that SERA consistently improves key metrics across multiple autonomous driving baselines, demonstrating its effectiveness and generalizability under safety-critical conditions.
Via

May 28, 2025
Abstract:Embedding-based collaborative filtering, often coupled with nearest neighbor search, is widely deployed in large-scale recommender systems for personalized content selection. Modern systems leverage multiple implicit feedback signals (e.g., clicks, add to cart, purchases) to model user preferences comprehensively. However, prevailing approaches adopt a feedback-wise modeling paradigm, which (1) fails to capture the structured progression of user engagement entailed among different feedback and (2) embeds feedback-specific information into disjoint spaces, making representations incommensurable, increasing system complexity, and leading to suboptimal retrieval performance. A promising alternative is Ordinal Logistic Regression (OLR), which explicitly models discrete ordered relations. However, existing OLR-based recommendation models mainly focus on explicit feedback (e.g., movie ratings) and struggle with implicit, correlated feedback, where ordering is vague and non-linear. Moreover, standard OLR lacks flexibility in handling feedback-dependent covariates, resulting in suboptimal performance in real-world systems. To address these limitations, we propose Generalized Neural Ordinal Logistic Regression (GNOLR), which encodes multiple feature-feedback dependencies into a unified, structured embedding space and enforces feedback-specific dependency learning through a nested optimization framework. Thus, GNOLR enhances predictive accuracy, captures the progression of user engagement, and simplifies the retrieval process. We establish a theoretical comparison with existing paradigms, demonstrating how GNOLR avoids disjoint spaces while maintaining effectiveness. Extensive experiments on ten real-world datasets show that GNOLR significantly outperforms state-of-the-art methods in efficiency and adaptability.
Via
