Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Jinhang Zuo, Zhiyao Zhang, Xuchuang Wang, Cheng Chen, Shuai Li, John C. S. Lui, Mohammad Hajiesmaili, Adam Wierman

Cooperative multi-agent multi-armed bandits (CMA2B) consider the collaborative efforts of multiple agents in a shared multi-armed bandit game. We study latent vulnerabilities exposed by this collaboration and consider adversarial attacks on a few agents with the goal of influencing the decisions of the rest. More specifically, we study adversarial attacks on CMA2B in both homogeneous settings, where agents operate with the same arm set, and heterogeneous settings, where agents have distinct arm sets. In the homogeneous setting, we propose attack strategies that, by targeting just one agent, convince all agents to select a particular target arm $T-o(T)$ times while incurring $o(T)$ attack costs in $T$ rounds. In the heterogeneous setting, we prove that a target arm attack requires linear attack costs and propose attack strategies that can force a maximum number of agents to suffer linear regrets while incurring sublinear costs and only manipulating the observations of a few target agents. Numerical experiments validate the effectiveness of our proposed attack strategies.

Via

Yi Hu, Jinhang Zuo, Bob Iannucci, Carlee Joe-Wong

Internet of Things (IoT) technologies have enabled numerous data-driven mobile applications and have the potential to significantly improve environmental monitoring and hazard warnings through the deployment of a network of IoT sensors. However, these IoT devices are often power-constrained and utilize wireless communication schemes with limited bandwidth. Such power constraints limit the amount of information each device can share across the network, while bandwidth limitations hinder sensors' coordination of their transmissions. In this work, we formulate the communication planning problem of IoT sensors that track the state of the environment. We seek to optimize sensors' decisions in collecting environmental data under stringent resource constraints. We propose a multi-agent reinforcement learning (MARL) method to find the optimal communication policies for each sensor that maximize the tracking accuracy subject to the power and bandwidth limitations. MARL learns and exploits the spatial-temporal correlation of the environmental data at each sensor's location to reduce the redundant reports from the sensors. Experiments on wildfire spread with LoRA wireless network simulators show that our MARL method can learn to balance the need to collect enough data to predict wildfire spread with unknown bandwidth limitations.

Via

Jinhang Zuo, Zhiyao Zhang, Zhiyong Wang, Shuai Li, Mohammad Hajiesmaili, Adam Wierman

Online learning to rank (OLTR) is a sequential decision-making problem where a learning agent selects an ordered list of items and receives feedback through user clicks. Although potential attacks against OLTR algorithms may cause serious losses in real-world applications, little is known about adversarial attacks on OLTR. This paper studies attack strategies against multiple variants of OLTR. Our first result provides an attack strategy against the UCB algorithm on classical stochastic bandits with binary feedback, which solves the key issues caused by bounded and discrete feedback that previous works can not handle. Building on this result, we design attack algorithms against UCB-based OLTR algorithms in position-based and cascade models. Finally, we propose a general attack strategy against any algorithm under the general click model. Each attack algorithm manipulates the learning agent into choosing the target attack item $T-o(T)$ times, incurring a cumulative cost of $o(T)$. Experiments on synthetic and real data further validate the effectiveness of our proposed attack algorithms.

Via

Xutong Liu, Jinhang Zuo, Siwei Wang, John C. S. Lui, Mohammad Hajiesmaili, Adam Wierman, Wei Chen

We study contextual combinatorial bandits with probabilistically triggered arms (C$^2$MAB-T) under a variety of smoothness conditions that capture a wide range of applications, such as contextual cascading bandits and contextual influence maximization bandits. Under the triggering probability modulated (TPM) condition, we devise the C$^2$-UCB-T algorithm and propose a novel analysis that achieves an $\tilde{O}(d\sqrt{KT})$ regret bound, removing a potentially exponentially large factor $O(1/p_{\min})$, where $d$ is the dimension of contexts, $p_{\min}$ is the minimum positive probability that any arm can be triggered, and batch-size $K$ is the maximum number of arms that can be triggered per round. Under the variance modulated (VM) or triggering probability and variance modulated (TPVM) conditions, we propose a new variance-adaptive algorithm VAC$^2$-UCB and derive a regret bound $\tilde{O}(d\sqrt{T})$, which is independent of the batch-size $K$. As a valuable by-product, we find our analysis technique and variance-adaptive algorithm can be applied to the CMAB-T and C$^2$MAB~setting, improving existing results there as well. We also include experiments that demonstrate the improved performance of our algorithms compared with benchmark algorithms on synthetic and real-world datasets.

Via

Jinhang Zuo, Songwen Hu, Tong Yu, Shuai Li, Handong Zhao, Carlee Joe-Wong

The recent advances of conversational recommendations provide a promising way to efficiently elicit users' preferences via conversational interactions. To achieve this, the recommender system conducts conversations with users, asking their preferences for different items or item categories. Most existing conversational recommender systems for cold-start users utilize a multi-armed bandit framework to learn users' preference in an online manner. However, they rely on a pre-defined conversation frequency for asking about item categories instead of individual items, which may incur excessive conversational interactions that hurt user experience. To enable more flexible questioning about key-terms, we formulate a new conversational bandit problem that allows the recommender system to choose either a key-term or an item to recommend at each round and explicitly models the rewards of these actions. This motivates us to handle a new exploration-exploitation (EE) trade-off between key-term asking and item recommendation, which requires us to accurately model the relationship between key-term and item rewards. We conduct a survey and analyze a real-world dataset to find that, unlike assumptions made in prior works, key-term rewards are mainly affected by rewards of representative items. We propose two bandit algorithms, Hier-UCB and Hier-LinUCB, that leverage this observed relationship and the hierarchical structure between key-terms and items to efficiently learn which items to recommend. We theoretically prove that our algorithm can reduce the regret bound's dependency on the total number of items from previous work. We validate our proposed algorithms and regret bound on both synthetic and real-world data.

Via

Xutong Liu, Jinhang Zuo, Siwei Wang, Carlee Joe-Wong, John C. S. Lui, Wei Chen

In this paper, we study the combinatorial semi-bandits (CMAB) and focus on reducing the dependency of the batch-size $K$ in the regret bound, where $K$ is the total number of arms that can be pulled or triggered in each round. First, for the setting of CMAB with probabilistically triggered arms (CMAB-T), we discover a novel (directional) triggering probability and variance modulated (TPVM) condition that can replace the previously-used smoothness condition for various applications, such as cascading bandits, online network exploration and online influence maximization. Under this new condition, we propose a BCUCB-T algorithm with variance-aware confidence intervals and conduct regret analysis which reduces the $O(K)$ factor to $O(\log K)$ or $O(\log^2 K)$ in the regret bound, significantly improving the regret bounds for the above applications. Second, for the setting of non-triggering CMAB with independent arms, we propose a SESCB algorithm which leverages on the non-triggering version of the TPVM condition and completely removes the dependency on $K$ in the leading regret. As a valuable by-product, the regret analysis used in this paper can improve several existing results by a factor of $O(\log K)$. Finally, experimental evaluations show our superior performance compared with benchmark algorithms in different applications.

Via

Xutong Liu, Jinhang Zuo, Xiaowei Chen, Wei Chen, John C. S. Lui

Multi-layered network exploration (MuLaNE) problem is an important problem abstracted from many applications. In MuLaNE, there are multiple network layers where each node has an importance weight and each layer is explored by a random walk. The MuLaNE task is to allocate total random walk budget $B$ into each network layer so that the total weights of the unique nodes visited by random walks are maximized. We systematically study this problem from offline optimization to online learning. For the offline optimization setting where the network structure and node weights are known, we provide greedy based constant-ratio approximation algorithms for overlapping networks, and greedy or dynamic-programming based optimal solutions for non-overlapping networks. For the online learning setting, neither the network structure nor the node weights are known initially. We adapt the combinatorial multi-armed bandit framework and design algorithms to learn random walk related parameters and node weights while optimizing the budget allocation in multiple rounds, and prove that they achieve logarithmic regret bounds. Finally, we conduct experiments on a real-world social network dataset to validate our theoretical results.

Via

Jinhang Zuo, Carlee Joe-Wong

We study the sequential resource allocation problem where a decision maker repeatedly allocates budgets between resources. Motivating examples include allocating limited computing time or wireless spectrum bands to multiple users (i.e., resources). At each timestep, the decision maker should distribute its available budgets among different resources to maximize the expected reward, or equivalently to minimize the cumulative regret. In doing so, the decision maker should learn the value of the resources allocated for each user from feedback on each user's received reward. For example, users may send messages of different urgency over wireless spectrum bands; the reward generated by allocating spectrum to a user then depends on the message's urgency. We assume each user's reward follows a random process that is initially unknown. We design combinatorial multi-armed bandit algorithms to solve this problem with discrete or continuous budgets. We prove the proposed algorithms achieve logarithmic regrets under semi-bandit feedback.

Via

Jinhang Zuo, Xutong Liu, Carlee Joe-Wong, John C. S. Lui, Wei Chen

Online influence maximization has attracted much attention as a way to maximize influence spread through a social network while learning the values of unknown network parameters. Most previous works focus on single-item diffusion. In this paper, we introduce a new Online Competitive Influence Maximization (OCIM) problem, where two competing items (e.g., products, news stories) propagate in the same network and influence probabilities on edges are unknown. We adapt the combinatorial multi-armed bandit (CMAB) framework for the OCIM problem, but unlike the non-competitive setting, the important monotonicity property (influence spread increases when influence probabilities on edges increase) no longer holds due to the competitive nature of propagation, which brings a significant new challenge to the problem. We prove that the Triggering Probability Modulated (TPM) condition for CMAB still holds, and then utilize the property of competitive diffusion to introduce a new offline oracle, and discuss how to implement this new oracle in various cases. We propose an OCIM-OIFU algorithm with such an oracle that achieves logarithmic regret. We also design an OCIM-ETC algorithm that has worse regret bound but requires less feedback and easier offline computation. Our experimental evaluations demonstrate the effectiveness of our algorithms.

Via

Jinhang Zuo, Xiaoxi Zhang, Carlee Joe-Wong

We consider the stochastic multi-armed bandit (MAB) problem in a setting where a player can pay to pre-observe arm rewards before playing an arm in each round. Apart from the usual trade-off between exploring new arms to find the best one and exploiting the arm believed to offer the highest reward, we encounter an additional dilemma: pre-observing more arms gives a higher chance to play the best one, but incurs a larger cost. For the single-player setting, we design an Observe-Before-Play Upper Confidence Bound (OBP-UCB) algorithm for $K$ arms with Bernoulli rewards, and prove a $T$-round regret upper bound $O(K^2\log T)$. In the multi-player setting, collisions will occur when players select the same arm to play in the same round. We design a centralized algorithm, C-MP-OBP, and prove its $T$-round regret relative to an offline greedy strategy is upper bounded in $O(\frac{K^4}{M^2}\log T)$ for $K$ arms and $M$ players. We also propose distributed versions of the C-MP-OBP policy, called D-MP-OBP and D-MP-Adapt-OBP, achieving logarithmic regret with respect to collision-free target policies. Experiments on synthetic data and wireless channel traces show that C-MP-OBP and D-MP-OBP outperform random heuristics and offline optimal policies that do not allow pre-observations.

Via