Abstract:In autonomous driving, end-to-end planners learn scene representations from raw sensor data and utilize them to generate a motion plan or control actions. However, exclusive reliance on the current scene for motion planning may result in suboptimal responses in highly dynamic traffic environments where ego actions further alter the future scene. To model the evolution of future scenes, we leverage the World Model to represent how the ego vehicle and its environment interact and change over time, which entails complex reasoning. The Chain of Thought (CoT) offers a promising solution by forecasting a sequence of future thoughts that subsequently guide trajectory refinement. In this paper, we propose FutureX, a CoT-driven pipeline that enhances end-to-end planners to perform complex motion planning via future scene latent reasoning and trajectory refinement. Specifically, the Auto-think Switch examines the current scene and decides whether additional reasoning is required to yield a higher-quality motion plan. Once FutureX enters the Thinking mode, the Latent World Model conducts a CoT-guided rollout to predict future scene representation, enabling the Summarizer Module to further refine the motion plan. Otherwise, FutureX operates in an Instant mode to generate motion plans in a forward pass for relatively simple scenes. Extensive experiments demonstrate that FutureX enhances existing methods by producing more rational motion plans and fewer collisions without compromising efficiency, thereby achieving substantial overall performance gains, e.g., 6.2 PDMS improvement for TransFuser on NAVSIM. Code will be released.
Abstract:Realistic and diverse multi-agent driving scenes are crucial for evaluating autonomous vehicles, but safety-critical events which are essential for this task are rare and underrepresented in driving datasets. Data-driven scene generation offers a low-cost alternative by synthesizing complex traffic behaviors from existing driving logs. However, existing models often lack controllability or yield samples that violate physical or social constraints, limiting their usability. We present OMEGA, an optimization-guided, training-free framework that enforces structural consistency and interaction awareness during diffusion-based sampling from a scene generation model. OMEGA re-anchors each reverse diffusion step via constrained optimization, steering the generation towards physically plausible and behaviorally coherent trajectories. Building on this framework, we formulate ego-attacker interactions as a game-theoretic optimization in the distribution space, approximating Nash equilibria to generate realistic, safety-critical adversarial scenarios. Experiments on nuPlan and Waymo show that OMEGA improves generation realism, consistency, and controllability, increasing the ratio of physically and behaviorally valid scenes from 32.35% to 72.27% for free exploration capabilities, and from 11% to 80% for controllability-focused generation. Our approach can also generate $5\times$ more near-collision frames with a time-to-collision under three seconds while maintaining the overall scene realism.
Abstract:Reliable whole slide imaging (WSI) hinges on image quality,yet staining artefacts, defocus, and cellular degradations are common. We present DPC-QA Net, a no-reference dual-stream network that couples wavelet-based global difference perception with cellular quality assessment from nuclear and membrane embeddings via an Aggr-RWKV module. Cross-attention fusion and multi-term losses align perceptual and cellular cues. Across different datasets, our model detects staining, membrane, and nuclear issues with >92% accuracy and aligns well with usability scores; on LIVEC and KonIQ it outperforms state-of-the-art NR-IQA. A downstream study further shows strong positive correlations between predicted quality and cell recognition accuracy (e.g., nuclei PQ/Dice, membrane boundary F-score), enabling practical pre-screening of WSI regions for computational pathology.
Abstract:Children's emotional development fundamentally relies on secure attachment relationships, yet current AI companions lack the theoretical foundation to provide developmentally appropriate emotional support. We introduce DinoCompanion, the first attachment-theory-grounded multimodal robot for emotionally responsive child-AI interaction. We address three critical challenges in child-AI systems: the absence of developmentally-informed AI architectures, the need to balance engagement with safety, and the lack of standardized evaluation frameworks for attachment-based capabilities. Our contributions include: (i) a multimodal dataset of 128 caregiver-child dyads containing 125,382 annotated clips with paired preference-risk labels, (ii) CARPO (Child-Aware Risk-calibrated Preference Optimization), a novel training objective that maximizes engagement while applying epistemic-uncertainty-weighted risk penalties, and (iii) AttachSecure-Bench, a comprehensive evaluation benchmark covering ten attachment-centric competencies with strong expert consensus (\k{appa}=0.81). DinoCompanion achieves state-of-the-art performance (57.15%), outperforming GPT-4o (50.29%) and Claude-3.7-Sonnet (53.43%), with exceptional secure base behaviors (72.99%, approaching human expert levels of 78.4%) and superior attachment risk detection (69.73%). Ablations validate the critical importance of multimodal fusion, uncertainty-aware risk modeling, and hierarchical memory for coherent, emotionally attuned interactions.
Abstract:As interest in using Large Language Models (LLMs) for interactive and emotionally rich experiences grows, virtual pet companionship emerges as a novel yet underexplored application. Existing approaches focus on basic pet role-playing interactions without systematically benchmarking LLMs for comprehensive companionship. In this paper, we introduce Pet-Bench, a dedicated benchmark that evaluates LLMs across both self-interaction and human-interaction dimensions. Unlike prior work, Pet-Bench emphasizes self-evolution and developmental behaviors alongside interactive engagement, offering a more realistic reflection of pet companionship. It features diverse tasks such as intelligent scheduling, memory-based dialogues, and psychological conversations, with over 7,500 interaction instances designed to simulate complex pet behaviors. Evaluation of 28 LLMs reveals significant performance variations linked to model size and inherent capabilities, underscoring the need for specialized optimization in this domain. Pet-Bench serves as a foundational resource for benchmarking pet-related LLM abilities and advancing emotionally immersive human-pet interactions.
Abstract:With the increasing integration of visual and textual content in Social Networking Services (SNS), evaluating the multimodal capabilities of Large Language Models (LLMs) is crucial for enhancing user experience, content understanding, and platform intelligence. Existing benchmarks primarily focus on text-centric tasks, lacking coverage of the multimodal contexts prevalent in modern SNS ecosystems. In this paper, we introduce SNS-Bench-VL, a comprehensive multimodal benchmark designed to assess the performance of Vision-Language LLMs in real-world social media scenarios. SNS-Bench-VL incorporates images and text across 8 multimodal tasks, including note comprehension, user engagement analysis, information retrieval, and personalized recommendation. It comprises 4,001 carefully curated multimodal question-answer pairs, covering single-choice, multiple-choice, and open-ended tasks. We evaluate over 25 state-of-the-art multimodal LLMs, analyzing their performance across tasks. Our findings highlight persistent challenges in multimodal social context comprehension. We hope SNS-Bench-VL will inspire future research towards robust, context-aware, and human-aligned multimodal intelligence for next-generation social networking services.
Abstract:Controllability, temporal coherence, and detail synthesis remain the most critical challenges in video generation. In this paper, we focus on a commonly used yet underexplored cinematic technique known as Frame In and Frame Out. Specifically, starting from image-to-video generation, users can control the objects in the image to naturally leave the scene or provide breaking new identity references to enter the scene, guided by user-specified motion trajectory. To support this task, we introduce a new dataset curated semi-automatically, a comprehensive evaluation protocol targeting this setting, and an efficient identity-preserving motion-controllable video Diffusion Transformer architecture. Our evaluation shows that our proposed approach significantly outperforms existing baselines.
Abstract:Ultrasound is a widely-used imaging modality critical to global healthcare, yet its interpretation remains challenging due to its varying image quality on operators, noises, and anatomical structures. Although large vision-language models (LVLMs) have demonstrated impressive multimodal capabilities across natural and medical domains, their performance on ultrasound remains largely unexplored. We introduce U2-BENCH, the first comprehensive benchmark to evaluate LVLMs on ultrasound understanding across classification, detection, regression, and text generation tasks. U2-BENCH aggregates 7,241 cases spanning 15 anatomical regions and defines 8 clinically inspired tasks, such as diagnosis, view recognition, lesion localization, clinical value estimation, and report generation, across 50 ultrasound application scenarios. We evaluate 20 state-of-the-art LVLMs, both open- and closed-source, general-purpose and medical-specific. Our results reveal strong performance on image-level classification, but persistent challenges in spatial reasoning and clinical language generation. U2-BENCH establishes a rigorous and unified testbed to assess and accelerate LVLM research in the uniquely multimodal domain of medical ultrasound imaging.
Abstract:The globalization of social interactions has heightened the need for machine translation (MT) on Social Network Services (SNS), yet traditional models struggle with culturally nuanced content like memes, slang, and pop culture references. While large language models (LLMs) have advanced general-purpose translation, their performance on SNS-specific content remains limited due to insufficient specialized training data and evaluation benchmarks. This paper introduces RedTrans, a 72B LLM tailored for SNS translation, trained on a novel dataset developed through three innovations: (1) Supervised Finetuning with Dual-LLM Back-Translation Sampling, an unsupervised sampling method using LLM-based back-translation to select diverse data for large-scale finetuning; (2) Rewritten Preference Optimization (RePO), an algorithm that identifies and corrects erroneous preference pairs through expert annotation, building reliable preference corpora; and (3) RedTrans-Bench, the first benchmark for SNS translation, evaluating phenomena like humor localization, emoji semantics, and meme adaptation. Experiments show RedTrans outperforms state-of-the-art LLMs. Besides, RedTrans has already been deployed in a real-world production environment, demonstrating that domain-specific adaptation, effectively bridges the gap between generic and culturally grounded translation systems.
Abstract:Mixture-of-Experts (MoE) architectures have emerged as a promising paradigm for scaling large language models (LLMs) with sparse activation of task-specific experts. Despite their computational efficiency during inference, the massive overall parameter footprint of MoE models (e.g., GPT-4) introduces critical challenges for practical deployment. Current pruning approaches often fail to address two inherent characteristics of MoE systems: 1).intra-layer expert homogeneity where experts within the same MoE layer exhibit functional redundancy, and 2). inter-layer similarity patterns where deeper layers tend to contain progressively more homogeneous experts. To tackle these issues, we propose Cluster-driven Expert Pruning (C-Prune), a novel two-stage framework for adaptive task-specific compression of MoE LLMs. C-Prune operates through layer-wise expert clustering, which groups functionally similar experts within each MoE layer using parameter similarity metrics, followed by global cluster pruning, which eliminates redundant clusters across all layers through a unified importance scoring mechanism that accounts for cross-layer homogeneity. We validate C-Prune through extensive experiments on multiple MoE models and benchmarks. The results demonstrate that C-Prune effectively reduces model size while outperforming existing MoE pruning methods.