Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Recommender systems often struggle with long-tail distributions and limited item catalog exposure, where a small subset of popular items dominates recommendations. This challenge is especially critical in large-scale online retail settings with extensive and diverse product assortments. This paper introduces an approach to enhance catalog coverage without compromising recommendation quality in the existing digital recommendation pipeline at IKEA Retail. Drawing inspiration from recent advances in negative sampling to address popularity bias, we integrate contrastive learning with carefully selected negative samples. Through offline and online evaluations, we demonstrate that our method improves catalog coverage, ensuring a more diverse set of recommendations yet preserving strong recommendation performance.
Bayesian Optimization (BO) is a standard tool for hyperparameter tuning thanks to its sample efficiency on expensive black-box functions. While most BO pipelines begin with uniform random initialization, default hyperparameter values shipped with popular ML libraries such as scikit-learn encode implicit expert knowledge and could serve as informative starting points that accelerate convergence. This hypothesis, despite its intuitive appeal, has remained largely unexamined. We formalize the idea by initializing BO with points drawn from truncated Gaussian distributions centered at library defaults and compare the resulting trajectories against a uniform-random baseline. We conduct an extensive empirical evaluation spanning three BO back-ends (BoTorch, Optuna, Scikit-Optimize), three model families (Random Forests, Support Vector Machines, Multilayer Perceptrons), and five benchmark datasets covering classification and regression tasks. Performance is assessed through convergence speed and final predictive quality, and statistical significance is determined via one-sided binomial tests. Across all conditions, default-informed initialization yields no statistically significant advantage over purely random sampling, with p-values ranging from 0.141 to 0.908. A sensitivity analysis on the prior variance confirms that, while tighter concentration around the defaults improves early evaluations, this transient benefit vanishes as optimization progresses, leaving final performance unchanged. Our results provide no evidence that default hyperparameters encode useful directional information for optimization. We therefore recommend that practitioners treat hyperparameter tuning as an integral part of model development and favor principled, data-driven search strategies over heuristic reliance on library defaults.
Nearest Neighbor Search (NNS) is a fundamental problem in data structures with wide-ranging applications, such as web search, recommendation systems, and, more recently, retrieval-augmented generations (RAG). In such recent applications, in addition to the relevance (similarity) of the returned neighbors, diversity among the neighbors is a central requirement. In this paper, we develop principled welfare-based formulations in NNS for realizing diversity across attributes. Our formulations are based on welfare functions -- from mathematical economics -- that satisfy central diversity (fairness) and relevance (economic efficiency) axioms. With a particular focus on Nash social welfare, we note that our welfare-based formulations provide objective functions that adaptively balance relevance and diversity in a query-dependent manner. Notably, such a balance was not present in the prior constraint-based approach, which forced a fixed level of diversity and optimized for relevance. In addition, our formulation provides a parametric way to control the trade-off between relevance and diversity, providing practitioners with flexibility to tailor search results to task-specific requirements. We develop efficient nearest neighbor algorithms with provable guarantees for the welfare-based objectives. Notably, our algorithm can be applied on top of any standard ANN method (i.e., use standard ANN method as a subroutine) to efficiently find neighbors that approximately maximize our welfare-based objectives. Experimental results demonstrate that our approach is practical and substantially improves diversity while maintaining high relevance of the retrieved neighbors.
Sequential recommendation (SR) aims to predict a user's next action by learning from their historical interaction sequences. In real-world applications, these models require periodic updates to adapt to new interactions and evolving user preferences. While incremental learning methods facilitate these updates, they face significant challenges. Replay-based approaches incur high memory and computational costs, and regularization-based methods often struggle to discard outdated or conflicting knowledge. To overcome these challenges, we propose SA-CAISR, a Stage-Adaptive and Conflict-Aware Incremental Sequential Recommendation framework. As a buffer-free framework, SA-CAISR operates using only the old model and new data, directly addressing the high costs of replay-based techniques. SA-CAISR introduces a novel Fisher-weighted knowledge-screening mechanism that dynamically identifies outdated knowledge by estimating parameter-level conflicts between the old model and new data, allowing our approach to selectively remove obsolete knowledge while preserving compatible historical patterns. This dynamic balance between stability and adaptability allows our method to achieve a new state-of-the-art performance in incremental SR. Specifically, SA-CAISR improves Recall@20 by 2.0%, MRR@20 by 1.2%, and NDCG@20 by 1.4% on average across datasets, while reducing memory usage by 97.5% and training time by 46.9% compared to the best baselines. This efficiency allows real-world systems to rapidly update user profiles with minimal computational overhead, ensuring more timely and accurate recommendations.
Sequential recommender infers users' evolving psychological motivations from historical interactions to recommend the next preferred items. Most existing methods compress recent behaviors into a single vector and optimize it toward a single observed target item, but lack explicit modeling of psychological motivation shift. As a result, they struggle to uncover the distributional patterns across different shift degrees and to capture collaborative knowledge that is sensitive to psychological motivation shift. We propose a general framework, the Sequential Recommender System Based on User Psychological Motivation, to enhance sequential recommenders with psychological motivation shift-aware user modeling. Specifically, the Psychological Motivation Shift Assessment quantitatively measures psychological motivation shift; guided by PMSA, the Shift Information Construction models dynamically evolving multi-level shift states, and the Psychological Motivation Shift-driven Information Decomposition decomposes and regularizes representations across shift levels. Moreover, the Psychological Motivation Shift Information Matching strengthens collaborative patterns related to psychological motivation shift to learn more discriminative user representations. Extensive experiments on three public benchmarks show that SRSUPM consistently outperforms representative baselines on diverse sequential recommender tasks.
Reinforcement Learning is increasingly applied to logistics, scheduling, and recommender systems, but standard algorithms struggle with the curse of dimensionality in such large discrete action spaces. Existing algorithms typically rely on restrictive grid-based structures or computationally expensive nearest-neighbor searches, limiting their effectiveness in high-dimensional or irregularly structured domains. We propose Distance-Guided Reinforcement Learning (DGRL), combining Sampled Dynamic Neighborhoods (SDN) and Distance-Based Updates (DBU) to enable efficient RL in spaces with up to 10$^\text{20}$ actions. Unlike prior methods, SDN leverages a semantic embedding space to perform stochastic volumetric exploration, provably providing full support over a local trust region. Complementing this, DBU transforms policy optimization into a stable regression task, decoupling gradient variance from action space cardinality and guaranteeing monotonic policy improvement. DGRL naturally generalizes to hybrid continuous-discrete action spaces without requiring hierarchical dependencies. We demonstrate performance improvements of up to 66% against state-of-the-art benchmarks across regularly and irregularly structured environments, while simultaneously improving convergence speed and computational complexity.
Live-streaming recommender system serves as critical infrastructure that bridges the patterns of real-time interactions between users and authors. Similar to traditional industrial recommender systems, live-streaming recommendation also relies on cascade architectures to support large-scale concurrency. Recent advances in generative recommendation unify the multi-stage recommendation process with Transformer-based architectures, offering improved scalability and higher computational efficiency. However, the inherent complexity of live-streaming prevents the direct transfer of these methods to live-streaming scenario, where continuously evolving content, limited lifecycles, strict real-time constraints, and heterogeneous multi-objectives introduce unique challenges that invalidate static tokenization and conventional model framework. To address these issues, we propose OneLive, a dynamically unified generative recommendation framework tailored for live-streaming scenario. OneLive integrates four key components: (i) A Dynamic Tokenizer that continuously encodes evolving real-time live content fused with behavior signal through residual quantization; (ii) A Time-Aware Gated Attention mechanism that explicitly models temporal dynamics for timely decision making; (iii) An efficient decoder-only generative architecture enhanced with Sequential MTP and QK Norm for stable training and accelerated inference; (iv) A Unified Multi-Objective Alignment Framework reinforces policy optimization for personalized preferences.
With the evolution of large language models (LLMs), there is growing interest in leveraging their rich semantic understanding to enhance industrial recommendation systems (RecSys). Traditional RecSys relies on ID-based embeddings for user sequence modeling in the General Search Unit (GSU) and Exact Search Unit (ESU) paradigm, which suffers from low information density, knowledge isolation, and weak generalization ability. While LLMs offer complementary strengths with dense semantic representations and strong generalization, directly applying LLM embeddings to RecSys faces critical challenges: representation unmatch with business objectives and representation unlearning end-to-end with downstream tasks. In this paper, we present QARM V2, a unified framework that bridges LLM semantic understanding with RecSys business requirements for user sequence modeling.
Generative Recommendation has revolutionized recommender systems by reformulating retrieval as a sequence generation task over discrete item identifiers. Despite the progress, existing approaches typically rely on static, decoupled tokenization that ignores collaborative signals. While recent methods attempt to integrate collaborative signals into item identifiers either during index construction or through end-to-end modeling, they encounter significant challenges in real-world production environments. Specifically, the volatility of collaborative signals leads to unstable tokenization, and current end-to-end strategies often devolve into suboptimal two-stage training rather than achieving true co-evolution. To bridge this gap, we propose PIT, a dynamic Personalized Item Tokenizer framework for end-to-end generative recommendation, which employs a co-generative architecture that harmonizes collaborative patterns through collaborative signal alignment and synchronizes item tokenizer with generative recommender via a co-evolution learning. This enables the dynamic, joint, end-to-end evolution of both index construction and recommendation. Furthermore, a one-to-many beam index ensures scalability and robustness, facilitating seamless integration into large-scale industrial deployments. Extensive experiments on real-world datasets demonstrate that PIT consistently outperforms competitive baselines. In a large-scale deployment at Kuaishou, an online A/B test yielded a substantial 0.402% uplift in App Stay Time, validating the framework's effectiveness in dynamic industrial environments.
Peer-run organizations (PROs) provide critical, recovery-based behavioral health support rooted in lived experience. As large language models (LLMs) enter this domain, their scale, conversationality, and opacity introduce new challenges for situatedness, trust, and autonomy. Partnering with Collaborative Support Programs of New Jersey (CSPNJ), a statewide PRO in the Northeastern United States, we used comicboarding, a co-design method, to conduct workshops with 16 peer specialists and 10 service users exploring perceptions of integrating an LLM-based recommendation system into peer support. Findings show that depending on how LLMs are introduced, constrained, and co-used, they can reconfigure in-room dynamics by sustaining, undermining, or amplifying the relational authority that grounds peer support. We identify opportunities, risks, and mitigation strategies across three tensions: bridging scale and locality, protecting trust and relational dynamics, and preserving peer autonomy amid efficiency gains. We contribute design implications that center lived-experience-in-the-loop, reframe trust as co-constructed, and position LLMs not as clinical tools but as relational collaborators in high-stakes, community-led care.