Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Large language models have recently shown promise for multimodal recommendation, particularly with text and image inputs. Yet real-world recommendation signals extend far beyond these modalities. To reflect this, we formalize recommendation features into four modalities: text, images, categorical features, and numerical attributes, and highlight the unique challenges this heterogeneity poses for LLMs in understanding multimodal information. In particular, these challenges arise not only across modalities but also within them, as attributes such as price, rating, and time may all be numeric yet carry distinct semantic meanings. Beyond this intra-modality ambiguity, another major challenge is the nested structure of recommendation signals, where user histories are sequences of items, each associated with multiple attributes. To address these challenges, we propose UniRec, a unified multimodal encoder for LLM-based recommendation. UniRec first employs modality-specific encoders to produce consistent embeddings across heterogeneous signals. It then adopts a triplet representation, comprising attribute name, type, and value, to separate schema from raw inputs and preserve semantic distinctions. Finally, a hierarchical Q-Former models the nested structure of user interactions while maintaining their layered organization. Across multiple real-world benchmarks, UniRec outperforms state-of-the-art multimodal and LLM-based recommenders by up to 15%, and extensive ablation studies further validate the contributions of each component.
Traditional e-commerce recommender systems primarily optimize for user engagement and purchase likelihood, often neglecting the rigid physiological constraints required for human health. Standard collaborative filtering algorithms are structurally blind to these hard limits, frequently suggesting bundles that fail to meet specific total daily energy expenditure and macronutrient balance requirements. To address this disconnect, this paper introduces a Physics-Informed Neuro-Symbolic Recommender System that integrates nutritional science directly into the recommendation pipeline via a dual-layer architecture. The framework begins by constructing a semantic knowledge graph using sentence-level encoders to strictly align commercial products with authoritative nutritional data. During the training phase, an implicit physics regularizer applies a differentiable thermodynamic loss function, ensuring that learned latent embeddings reflect nutritional plausibility rather than simple popularity. Subsequently, during the inference phase, an explicit physics optimizer employs simulated annealing and elastic quantity optimization to generate discrete grocery bundles that strictly adhere to the user's protein and caloric targets.
Multimodal Recommendation (MMR) systems are crucial for modern platforms but are often hampered by inherent noise and uncertainty in modal features, such as blurry images, diverse visual appearances, or ambiguous text. Existing methods often overlook this modality-specific uncertainty, leading to ineffective feature fusion. Furthermore, they fail to leverage rich similarity patterns among users and items to refine representations and their corresponding uncertainty estimates. To address these challenges, we propose a novel framework, Similarity Propagation-enhanced Uncertainty for Multimodal Recommendation (SPUMR). SPUMR explicitly models and mitigates uncertainty by first constructing the Modality Similarity Graph and the Collaborative Similarity Graph to refine representations from both content and behavioral perspectives. The Uncertainty-aware Preference Aggregation module then adaptively fuses the refined multimodal features, assigning greater weight to more reliable modalities. Extensive experiments on three benchmark datasets demonstrate that SPUMR achieves significant improvements over existing leading methods.
User behavior sequences in modern recommendation systems exhibit significant length heterogeneity, ranging from sparse short-term interactions to rich long-term histories. While longer sequences provide more context, we observe that increasing the maximum input sequence length in existing CTR models paradoxically degrades performance for short-sequence users due to attention polarization and length imbalance in training data. To address this, we propose LAIN(Length-Adaptive Interest Network), a plug-and-play framework that explicitly incorporates sequence length as a conditioning signal to balance long- and short-sequence modeling. LAIN consists of three lightweight components: a Spectral Length Encoder that maps length into continuous representations, Length-Conditioned Prompting that injects global contextual cues into both long- and short-term behavior branches, and Length-Modulated Attention that adaptively adjusts attention sharpness based on sequence length. Extensive experiments on three real-world benchmarks across five strong CTR backbones show that LAIN consistently improves overall performance, achieving up to 1.15% AUC gain and 2.25% log loss reduction. Notably, our method significantly improves accuracy for short-sequence users without sacrificing longsequence effectiveness. Our work offers a general, efficient, and deployable solution to mitigate length-induced bias in sequential recommendation.
Large Language Models (LLMs) have emerged as powerful tools for generating data across various modalities. By transforming data from a scarce resource into a controllable asset, LLMs mitigate the bottlenecks imposed by the acquisition costs of real-world data for model training, evaluation, and system iteration. However, ensuring the high quality of LLM-generated synthetic data remains a critical challenge. Existing research primarily focuses on generation methodologies, with limited direct attention to the quality of the resulting data. Furthermore, most studies are restricted to single modalities, lacking a unified perspective across different data types. To bridge this gap, we propose the \textbf{LLM Data Auditor framework}. In this framework, we first describe how LLMs are utilized to generate data across six distinct modalities. More importantly, we systematically categorize intrinsic metrics for evaluating synthetic data from two dimensions: quality and trustworthiness. This approach shifts the focus from extrinsic evaluation, which relies on downstream task performance, to the inherent properties of the data itself. Using this evaluation system, we analyze the experimental evaluations of representative generation methods for each modality and identify substantial deficiencies in current evaluation practices. Based on these findings, we offer concrete recommendations for the community to improve the evaluation of data generation. Finally, the framework outlines methodologies for the practical application of synthetic data across different modalities.
In the era of explosive growth in academic literature, the burden of literature review on scholars are increasing. Proactively recommending academic papers that align with scholars' literature needs in the research process has become one of the crucial pathways to enhance research efficiency and stimulate innovative thinking. Current academic paper recommendation systems primarily focus on broad and coarse-grained suggestions based on general topic or field similarities. While these systems effectively identify related literature, they fall short in addressing scholars' more specific and fine-grained needs, such as locating papers that utilize particular research methods, or tackle distinct research tasks within the same topic. To meet the diverse and specific literature needs of scholars in the research process, this paper proposes a novel academic paper recommendation method. This approach embeds multidimensional information by integrating new types of fine-grained knowledge entities, title and abstract of document, and citation data. Recommendations are then generated by calculating the similarity between combined paper vectors. The proposed recommendation method was evaluated using the STM-KG dataset, a knowledge graph that incorporates scientific concepts derived from papers across ten distinct domains. The experimental results indicate that our method outperforms baseline models, achieving an average precision of 27.3% among the top 50 recommendations. This represents an improvement of 6.7% over existing approaches.
Recommender systems (RS) aim to retrieve a small set of items that best match individual user preferences. Naturally, RS place primary emphasis on the quality of the Top-$K$ results rather than performance across the entire item set. However, estimating Top-$K$ accuracy (e.g., Precision@$K$, Recall@$K$) requires determining the ranking positions of items, which imposes substantial computational overhead and poses significant challenges for optimization. In addition, RS often suffer from distribution shifts due to evolving user preferences or data biases, further complicating the task. To address these issues, we propose Talos, a loss function that is specifically designed to optimize the Talos recommendation accuracy. Talos leverages a quantile technique that replaces the complex ranking-dependent operations into simpler comparisons between predicted scores and learned score thresholds. We further develop a sampling-based regression algorithm for efficient and accurate threshold estimation, and introduce a constraint term to maintain optimization stability by preventing score inflation. Additionally, we incorporate a tailored surrogate function to address discontinuity and enhance robustness against distribution shifts. Comprehensive theoretical analyzes and empirical experiments are conducted to demonstrate the effectiveness, efficiency, convergence, and distributional robustness of Talos. The code is available at https://github.com/cynthia-shengjia/WWW-2026-Talos.
Large Language Models (LLMs) are increasingly used to generate natural-language explanations in recommender systems, acting as explanation agents that reason over user behavior histories. While prior work has focused on explanation fluency and relevance under fixed inputs, the robustness of LLM-generated explanations to realistic user behavior noise remains largely unexplored. In real-world web platforms, interaction histories are inherently noisy due to accidental clicks, temporal inconsistencies, missing values, and evolving preferences, raising concerns about explanation stability and user trust. We present RobustExplain, the first systematic evaluation framework for measuring the robustness of LLM-generated recommendation explanations. RobustExplain introduces five realistic user behavior perturbations evaluated across multiple severity levels and a multi-dimensional robustness metric capturing semantic, keyword, structural, and length consistency. Our goal is to establish a principled, task-level evaluation framework and initial robustness baselines, rather than to provide a comprehensive leaderboard across all available LLMs. Experiments on four representative LLMs (7B--70B) show that current models exhibit only moderate robustness, with larger models achieving up to 8% higher stability. Our results establish the first robustness benchmarks for explanation agents and highlight robustness as a critical dimension for trustworthy, agent-driven recommender systems at web scale.
Recommendation systems must optimize multiple objectives while satisfying hard business constraints such as fairness and coverage. For example, an e-commerce platform may require every recommendation list to include items from multiple sellers and at least one newly listed product; violating such constraints--even once--is unacceptable in production. Prior work on multi-objective recommendation and recent LLM-based recommender agents largely treat constraints as soft penalties or focus on item scoring and interaction, leading to frequent violations in real-world deployments. How to leverage LLMs for coordinating constrained optimization in recommendation systems remains underexplored. We propose DualAgent-Rec, an LLM-coordinated dual-agent framework for constrained multi-objective e-commerce recommendation. The framework separates optimization into an Exploitation Agent that prioritizes accuracy under hard constraints and an Exploration Agent that promotes diversity through unconstrained Pareto search. An LLM-based coordinator adaptively allocates resources between agents based on optimization progress and constraint satisfaction, while an adaptive epsilon-relaxation mechanism guarantees feasibility of final solutions. Experiments on the Amazon Reviews 2023 dataset demonstrate that DualAgent-Rec achieves 100% constraint satisfaction and improves Pareto hypervolume by 4-6% over strong baselines, while maintaining competitive accuracy-diversity trade-offs. These results indicate that LLMs can act as effective orchestration agents for deployable and constraint-compliant recommendation systems.
Although generative recommenders demonstrate improved performance with longer sequences, their real-time deployment is hindered by substantial computational costs. To address this challenge, we propose a simple yet effective method for compressing long-term user histories by leveraging inherent item categorical features, thereby preserving user interests while enhancing efficiency. Experiments on two large-scale datasets demonstrate that, compared to the influential HSTU model, our approach achieves up to a 6x reduction in computational cost and up to 39% higher accuracy at comparable cost (i.e., similar sequence length).