Neural audio codecs provide promising acoustic features for speech synthesis, with representative streaming codecs like Mimi providing high-quality acoustic features for real-time Text-to-Speech (TTS) applications. However, Mimi's decoder, which employs a hybrid transformer and convolution architecture, introduces significant latency bottlenecks on edge devices due to the the compute intensive nature of deconvolution layers which are not friendly for mobile-CPUs, such as the most representative framework XNNPACK. This paper introduces T-Mimi, a novel modification of the Mimi codec decoder that replaces its convolutional components with a purely transformer-based decoder, inspired by the TS3-Codec architecture. This change dramatically reduces on-device TTS latency from 42.1ms to just 4.4ms. Furthermore, we conduct quantization aware training and derive a crucial finding: the final two transformer layers and the concluding linear layers of the decoder, which are close to the waveform, are highly sensitive to quantization and must be preserved at full precision to maintain audio quality.
As Speech Language Models (SLMs) transition from personal devices to shared, multi-user environments such as smart homes, a new challenge emerges: the model is expected to distinguish between users to manage information flow appropriately. Without this capability, an SLM could reveal one user's confidential schedule to another, a privacy failure we term interactional privacy. Thus, the ability to generate speaker-aware responses becomes essential for SLM safe deployment. Current SLM benchmarks test dialogue ability but overlook speaker identity. Multi-speaker benchmarks check who said what without assessing whether SLMs adapt their responses. Privacy benchmarks focus on globally sensitive data (e.g., bank passwords) while neglecting contextual privacy-sensitive information (e.g., a user's private appointment). To address this gap, we introduce VoxPrivacy, the first benchmark designed to evaluate interactional privacy in SLMs. VoxPrivacy spans three tiers of increasing difficulty, from following direct secrecy commands to proactively protecting privacy. Our evaluation of nine SLMs on a 32-hour bilingual dataset reveals a widespread vulnerability: most open-source models perform close to random chance (around 50% accuracy) on conditional privacy decisions, while even strong closed-source systems fall short on proactive privacy inference. We further validate these findings on Real-VoxPrivacy, a human-recorded subset, confirming that failures observed on synthetic data persist in real speech. Finally, we demonstrate a viable path forward: by fine-tuning on a new 4,000-hour training set, we improve privacy-preserving abilities while maintaining robustness. To support future work, we release the VoxPrivacy benchmark, the large-scale training set, and the fine-tuned model to foster the development of safer and more context-aware SLMs.
Speech separation (SS) has advanced significantly with neural network-based methods, showing improved performance on signal-level metrics. However, these methods often struggle to maintain speech intelligibility in the separated signals, which can negatively affect the performance of downstream tasks such as speech recognition. In this work, we propose SLM-SS, a novel approach that applies speech language models to SS, aiming to enhance the intelligibility and coherence of the separated signals. We frame SS as discrete multi-codebook sequence generation, using Encoder-Decoder models to map quantized speech mixtures to target tokens. In addition to the autoregressive modeling strategy, we introduce a non-autoregressive model to improve decoding efficiency for residual tokens. Experimental results on the LibriMix dataset demonstrate that our approach shows significantly better preservation of speech intelligibility, leading to improved linguistic consistency in a variety of downstream tasks compared to existing approaches.
Recent advances in LLM-based ASR connect frozen speech encoders with Large Language Models (LLMs) via lightweight projectors. While effective in monolingual settings, a single projector struggles to capture the diverse acoustic-to-semantic mappings required for multilingual ASR. To address this, we propose SMEAR-MoE, a stabilized Mixture-of-Experts projector that ensures dense gradient flow to all experts, preventing expert collapse while enabling cross-lingual sharing. We systematically compare monolithic, static multi-projector, and dynamic MoE designs across four Indic languages (Hindi, Marathi, Tamil, Telugu). Our SMEAR-MoE achieves strong performance, delivering upto a 7.6% relative WER reduction over the single-projector baseline, while maintaining comparable runtime efficiency. Analysis of expert routing further shows linguistically meaningful specialization, with related languages sharing experts. These results demonstrate that stable multi-expert projectors are key to scalable and robust multilingual ASR.
Speaker-attributed automatic speech recognition (ASR) in multi-speaker environments remains a major challenge. While some approaches achieve strong performance when fine-tuned on specific domains, few systems generalize well across out-of-domain datasets. Our prior work, Diarization-Conditioned Whisper (DiCoW), leverages speaker diarization outputs as conditioning information and, with minimal fine-tuning, demonstrated strong multilingual and multi-domain performance. In this paper, we address a key limitation of DiCoW: ambiguity in Silence-Target-Non-target-Overlap (STNO) masks, where two or more fully overlapping speakers may have nearly identical conditioning despite differing transcriptions. We introduce SE-DiCoW (Self-Enrolled Diarization-Conditioned Whisper), which uses diarization output to locate an enrollment segment anywhere in the conversation where the target speaker is most active. This enrollment segment is used as fixed conditioning via cross-attention at each encoder layer. We further refine DiCoW with improved data segmentation, model initialization, and augmentation. Together, these advances yield substantial gains: SE-DiCoW reduces macro-averaged tcpWER by 52.4% relative to the original DiCoW on the EMMA MT-ASR benchmark.
Most audio-visual speaker extraction methods rely on synchronized lip recording to isolate the speech of a target speaker from a multi-talker mixture. However, in natural human communication, co-speech gestures are also temporally aligned with speech, often emphasizing specific words or syllables. These gestures provide complementary visual cues that can be especially valuable when facial or lip regions are occluded or distant. In this work, we move beyond lip-centric approaches and propose SeLG, a model that integrates both lip and upper-body gesture information for robust speaker extraction. SeLG features a cross-attention-based fusion mechanism that enables each visual modality to query and selectively attend to relevant speech features in the mixture. To improve the alignment of gesture representations with speech dynamics, SeLG also employs a contrastive InfoNCE loss that encourages gesture embeddings to align more closely with corresponding lip embeddings, which are more strongly correlated with speech. Experimental results on the YGD dataset, containing TED talks, demonstrate that the proposed contrastive learning strategy significantly improves gesture-based speaker extraction, and that our proposed SeLG model, by effectively fusing lip and gesture cues with an attention mechanism and InfoNCE loss, achieves superior performance compared to baselines, across both complete and partial (i.e., missing-modality) conditions.
Universal speech enhancement aims at handling inputs with various speech distortions and recording conditions. In this work, we propose a novel hybrid architecture that synergizes the signal fidelity of discriminative modeling with the reconstruction capabilities of generative modeling. Our system utilizes the discriminative TF-GridNet model with the Sampling-Frequency-Independent strategy to handle variable sampling rates universally. In parallel, an autoregressive model combined with spectral mapping modeling generates detail-rich speech while effectively suppressing generative artifacts. Finally, a fusion network learns adaptive weights of the two outputs under the optimization of signal-level losses and the comprehensive Speech Quality Assessment (SQA) loss. Our proposed system is evaluated in the ICASSP 2026 URGENT Challenge (Track 1) and ranks the third place.
Reinforcement learning from human or AI feedback (RLHF/RLAIF) for speech-in/speech-out dialogue systems (SDS) remains underexplored, with prior work largely limited to single semantic rewards applied at the utterance level. Such setups overlook the multi-dimensional and multi-modal nature of conversational quality, which encompasses semantic coherence, audio naturalness, speaker consistency, emotion alignment, and turn-taking behavior. Moreover, they are fundamentally mismatched with duplex spoken dialogue systems that generate responses incrementally, where agents must make decisions based on partial utterances. We address these limitations with the first multi-reward RLAIF framework for SDS, combining semantic, audio-quality, and emotion-consistency rewards. To align utterance-level preferences with incremental, blockwise decoding in duplex models, we apply turn-level preference sampling and aggregate per-block log-probabilities within a single DPO objective. We present the first systematic study of preference learning for improving SDS quality in both multi-turn Chain-of-Thought and blockwise duplex models, and release a multi-reward DPO dataset to support reproducible research. Experiments show that single-reward RLAIF selectively improves its targeted metric, while joint multi-reward training yields consistent gains across semantic quality and audio naturalness. These results highlight the importance of holistic, multi-reward alignment for practical conversational SDS.
Recent speech modeling relies on explicit attributes such as pitch, content, and speaker identity, but these alone cannot capture the full richness of natural speech. We introduce RT-MAE, a novel masked autoencoder framework that augments the supervised attributes-based modeling with unsupervised residual trainable tokens, designed to encode the information not explained by explicit labeled factors (e.g., timbre variations, noise, emotion etc). Experiments show that RT-MAE improves reconstruction quality, preserving content and speaker similarity while enhancing expressivity. We further demonstrate its applicability to speech enhancement, removing noise at inference while maintaining controllability and naturalness.
Edge devices operate in constrained and varying resource settings, requiring dynamic architectures that can adapt to limitations of the available resources. To meet such demands, layer dropping ($\mathcal{LD}$) approach is typically used to transform static models into dynamic ones by skipping parts of the network along with reducing overall computational complexity. However, existing $\mathcal{LD}$ methods greatly impact the dynamic model's performance for low and high dropping cases, deteriorating the performance-computation trade-off. To this end, we propose a distillation-based layer dropping (DLD) framework that effectively combines the capabilities of knowledge distillation and $\mathcal{LD}$ in an end-to-end fashion, thereby achieving state-of-the-art performance for dynamic speech networks. Comprehensive experimentation utilizing well-known speech recognition methods, including conformer and WavLM, on three public benchmarks demonstrates the effectiveness of our framework, reducing the word error rate by $9.32\%$ and $2.25\%$ for high and no dropping cases with $33.3\%$ reduction in training time.