Abstract:Compared with visual signals, Inertial Measurement Units (IMUs) placed on human limbs can capture accurate motion signals while being robust to lighting variation and occlusion. While these characteristics are intuitively valuable to help egocentric action recognition, the potential of IMUs remains under-explored. In this work, we present a novel method for action recognition that integrates motion data from body-worn IMUs with egocentric video. Due to the scarcity of labeled multimodal data, we design an MAE-based self-supervised pretraining method, obtaining strong multi-modal representations via modeling the natural correlation between visual and motion signals. To model the complex relation of multiple IMU devices placed across the body, we exploit the collaborative dynamics in multiple IMU devices and propose to embed the relative motion features of human joints into a graph structure. Experiments show our method can achieve state-of-the-art performance on multiple public datasets. The effectiveness of our MAE-based pretraining and graph-based IMU modeling are further validated by experiments in more challenging scenarios, including partially missing IMU devices and video quality corruption, promoting more flexible usages in the real world.
Abstract:Being able to map the activities of others into one's own point of view is one fundamental human skill even from a very early age. Taking a step toward understanding this human ability, we introduce EgoExoLearn, a large-scale dataset that emulates the human demonstration following process, in which individuals record egocentric videos as they execute tasks guided by demonstration videos. Focusing on the potential applications in daily assistance and professional support, EgoExoLearn contains egocentric and demonstration video data spanning 120 hours captured in daily life scenarios and specialized laboratories. Along with the videos we record high-quality gaze data and provide detailed multimodal annotations, formulating a playground for modeling the human ability to bridge asynchronous procedural actions from different viewpoints. To this end, we present benchmarks such as cross-view association, cross-view action planning, and cross-view referenced skill assessment, along with detailed analysis. We expect EgoExoLearn can serve as an important resource for bridging the actions across views, thus paving the way for creating AI agents capable of seamlessly learning by observing humans in the real world. Code and data can be found at: https://github.com/OpenGVLab/EgoExoLearn
Abstract:The pursuit of accurate 3D hand pose estimation stands as a keystone for understanding human activity in the realm of egocentric vision. The majority of existing estimation methods still rely on single-view images as input, leading to potential limitations, e.g., limited field-of-view and ambiguity in depth. To address these problems, adding another camera to better capture the shape of hands is a practical direction. However, existing multi-view hand pose estimation methods suffer from two main drawbacks: 1) Requiring multi-view annotations for training, which are expensive. 2) During testing, the model becomes inapplicable if camera parameters/layout are not the same as those used in training. In this paper, we propose a novel Single-to-Dual-view adaptation (S2DHand) solution that adapts a pre-trained single-view estimator to dual views. Compared with existing multi-view training methods, 1) our adaptation process is unsupervised, eliminating the need for multi-view annotation. 2) Moreover, our method can handle arbitrary dual-view pairs with unknown camera parameters, making the model applicable to diverse camera settings. Specifically, S2DHand is built on certain stereo constraints, including pair-wise cross-view consensus and invariance of transformation between both views. These two stereo constraints are used in a complementary manner to generate pseudo-labels, allowing reliable adaptation. Evaluation results reveal that S2DHand achieves significant improvements on arbitrary camera pairs under both in-dataset and cross-dataset settings, and outperforms existing adaptation methods with leading performance. Project page: https://github.com/MickeyLLG/S2DHand.
Abstract:The Multiplane Image (MPI), containing a set of fronto-parallel RGBA layers, is an effective and efficient representation for view synthesis from sparse inputs. Yet, its fixed structure limits the performance, especially for surfaces imaged at oblique angles. We introduce the Structural MPI (S-MPI), where the plane structure approximates 3D scenes concisely. Conveying RGBA contexts with geometrically-faithful structures, the S-MPI directly bridges view synthesis and 3D reconstruction. It can not only overcome the critical limitations of MPI, i.e., discretization artifacts from sloped surfaces and abuse of redundant layers, and can also acquire planar 3D reconstruction. Despite the intuition and demand of applying S-MPI, great challenges are introduced, e.g., high-fidelity approximation for both RGBA layers and plane poses, multi-view consistency, non-planar regions modeling, and efficient rendering with intersected planes. Accordingly, we propose a transformer-based network based on a segmentation model. It predicts compact and expressive S-MPI layers with their corresponding masks, poses, and RGBA contexts. Non-planar regions are inclusively handled as a special case in our unified framework. Multi-view consistency is ensured by sharing global proxy embeddings, which encode plane-level features covering the complete 3D scenes with aligned coordinates. Intensive experiments show that our method outperforms both previous state-of-the-art MPI-based view synthesis methods and planar reconstruction methods.
Abstract:Appearance-based gaze estimation aims to predict the 3D eye gaze direction from a single image. While recent deep learning-based approaches have demonstrated excellent performance, they usually assume one calibrated face in each input image and cannot output multi-person gaze in real time. However, simultaneous gaze estimation for multiple people in the wild is necessary for real-world applications. In this paper, we propose the first one-stage end-to-end gaze estimation method, GazeOnce, which is capable of simultaneously predicting gaze directions for multiple faces (>10) in an image. In addition, we design a sophisticated data generation pipeline and propose a new dataset, MPSGaze, which contains full images of multiple people with 3D gaze ground truth. Experimental results demonstrate that our unified framework not only offers a faster speed, but also provides a lower gaze estimation error compared with state-of-the-art methods. This technique can be useful in real-time applications with multiple users.