Image-to-image translation is the process of converting an image from one domain to another using deep learning techniques.
Deep learning is transforming microscopy, yet models often fail when applied to images from new instruments or acquisition settings. Conventional adversarial domain adaptation (ADDA) retrains entire networks, often disrupting learned semantic representations. Here, we overturn this paradigm by showing that adapting only the earliest convolutional layers, while freezing deeper layers, yields reliable transfer. Building on this principle, we introduce Subnetwork Image Translation ADDA with automatic depth selection (SIT-ADDA-Auto), a self-configuring framework that integrates shallow-layer adversarial alignment with predictive uncertainty to automatically select adaptation depth without target labels. We demonstrate robustness via multi-metric evaluation, blinded expert assessment, and uncertainty-depth ablations. Across exposure and illumination shifts, cross-instrument transfer, and multiple stains, SIT-ADDA improves reconstruction and downstream segmentation over full-encoder adaptation and non-adversarial baselines, with reduced drift of semantic features. Our results provide a design rule for label-free adaptation in microscopy and a recipe for field settings; the code is publicly available.




Generating synthetic CT images from CBCT or MRI has a potential for efficient radiation dose planning and adaptive radiotherapy. However, existing CNN-based models lack global semantic understanding, while Transformers often overfit small medical datasets due to high model capacity and weak inductive bias. To address these limitations, we propose a DINOv3-Guided Cross Fusion (DGCF) framework that integrates a frozen self-supervised DINOv3 Transformer with a trainable CNN encoder-decoder. It hierarchically fuses global representation of Transformer and local features of CNN via a learnable cross fusion module, achieving balanced local appearance and contextual representation. Furthermore, we introduce a Multi-Level DINOv3 Perceptual (MLDP) loss that encourages semantic similarity between synthetic CT and the ground truth in DINOv3's feature space. Experiments on the SynthRAD2023 pelvic dataset demonstrate that DGCF achieved state-of-the-art performance in terms of MS-SSIM, PSNR and segmentation-based metrics on both MRI$\rightarrow$CT and CBCT$\rightarrow$CT translation tasks. To the best of our knowledge, this is the first work to employ DINOv3 representations for medical image translation, highlighting the potential of self-supervised Transformer guidance for semantic-aware CT synthesis. The code is available at https://github.com/HiLab-git/DGCF.
Ultra-low-field (ULF) MRI promises broader accessibility but suffers from low signal-to-noise ratio (SNR), reduced spatial resolution, and contrasts that deviate from high-field standards. Image-to-image translation can map ULF images to a high-field appearance, yet efficacy is limited by scarce paired training data. Working within the ULF-EnC challenge constraints (50 paired 3D volumes; no external data), we study how task-adapted data augmentations impact a standard deep model for ULF image enhancement. We show that strong, diverse augmentations, including auxiliary tasks on high-field data, substantially improve fidelity. Our submission ranked third by brain-masked SSIM on the public validation leaderboard and fourth by the official score on the final test leaderboard. Code is available at https://github.com/fzimmermann89/low-field-enhancement.
Automated medical image captioning translates complex radiological images into diagnostic narratives that can support reporting workflows. We present a Swin-BART encoder-decoder system with a lightweight regional attention module that amplifies diagnostically salient regions before cross-attention. Trained and evaluated on ROCO, our model achieves state-of-the-art semantic fidelity while remaining compact and interpretable. We report results as mean$\pm$std over three seeds and include $95\%$ confidence intervals. Compared with baselines, our approach improves ROUGE (proposed 0.603, ResNet-CNN 0.356, BLIP2-OPT 0.255) and BERTScore (proposed 0.807, BLIP2-OPT 0.645, ResNet-CNN 0.623), with competitive BLEU, CIDEr, and METEOR. We further provide ablations (regional attention on/off and token-count sweep), per-modality analysis (CT/MRI/X-ray), paired significance tests, and qualitative heatmaps that visualize the regions driving each description. Decoding uses beam search (beam size $=4$), length penalty $=1.1$, $no\_repeat\_ngram\_size$ $=3$, and max length $=128$. The proposed design yields accurate, clinically phrased captions and transparent regional attributions, supporting safe research use with a human in the loop.
Generating novel views of a natural scene, e.g., every-day scenes both indoors and outdoors, from a single view is an under-explored problem, even though it is an organic extension to the object-centric novel view synthesis. Existing diffusion-based approaches focus rather on small camera movements in real scenes or only consider unnatural object-centric scenes, limiting their potential applications in real-world settings. In this paper we move away from these constrained regimes and propose a 3D diffusion model trained with image-only losses on a large-scale dataset of real-world, multi-category, unaligned, and casually acquired videos of everyday scenes. We propose DT-NVS, a 3D-aware diffusion model for generalized novel view synthesis that exploits a transformer-based architecture backbone. We make significant contributions to transformer and self-attention architectures to translate images to 3d representations, and novel camera conditioning strategies to allow training on real-world unaligned datasets. In addition, we introduce a novel training paradigm swapping the role of reference frame between the conditioning image and the sampled noisy input. We evaluate our approach on the 3D task of generalized novel view synthesis from a single input image and show improvements over state-of-the-art 3D aware diffusion models and deterministic approaches, while generating diverse outputs.
Autonomous migration is essential for the function of immune cells such as neutrophils and plays a pivotal role in diverse diseases. Recently, we introduced ComplexEye, a multi-lens array microscope comprising 16 independent aberration-corrected glass lenses arranged at the pitch of a 96-well plate, capable of capturing high-resolution movies of migrating cells. This architecture enables high-throughput live-cell video microscopy for migration analysis, supporting routine quantification of autonomous motility with strong potential for clinical translation. However, ComplexEye and similar high-throughput imaging platforms generate data at an exponential rate, imposing substantial burdens on storage and transmission. To address this challenge, we present FlowRoI, a fast optical-flow-based region of interest (RoI) extraction framework designed for high-throughput image compression in immune cell migration studies. FlowRoI estimates optical flow between consecutive frames and derives RoI masks that reliably cover nearly all migrating cells. The raw image and its corresponding RoI mask are then jointly encoded using JPEG2000 to enable RoI-aware compression. FlowRoI operates with high computational efficiency, achieving runtimes comparable to standard JPEG2000 and reaching an average throughput of about 30 frames per second on a modern laptop equipped with an Intel i7-1255U CPU. In terms of image quality, FlowRoI yields higher peak signal-to-noise ratio (PSNR) in cellular regions and achieves 2.0-2.2x higher compression rates at matched PSNR compared to standard JPEG2000.




We present CrochetBench, a benchmark for evaluating the ability of multimodal large language models to perform fine-grained, low-level procedural reasoning in the domain of crochet. Unlike prior benchmarks that focus on high-level description or visual question answering, CrochetBench shifts the emphasis from describing to doing: models are required to recognize stitches, select structurally appropriate instructions, and generate compilable crochet procedures. We adopt the CrochetPARADE DSL as our intermediate representation, enabling structural validation and functional evaluation via execution. The benchmark covers tasks including stitch classification, instruction grounding, and both natural language and image-to-DSL translation. Across all tasks, performance sharply declines as the evaluation shifts from surface-level similarity to executable correctness, exposing limitations in long-range symbolic reasoning and 3D-aware procedural synthesis. CrochetBench offers a new lens for assessing procedural competence in multimodal models and highlights the gap between surface-level understanding and executable precision in real-world creative domains. Code is available at https://github.com/Peiyu-Georgia-Li/crochetBench.
Structure from Motion (SfM) is a critical task in computer vision, aiming to recover the 3D scene structure and camera motion from a sequence of 2D images. The recent pose-only imaging geometry decouples 3D coordinates from camera poses and demonstrates significantly better SfM performance through pose adjustment. Continuing the pose-only perspective, this paper explores the critical relationship between the scene structures, rotation and translation. Notably, the translation can be expressed in terms of rotation, allowing us to condense the imaging geometry representation onto the rotation manifold. A rotation-only optimization framework based on reprojection error is proposed for both two-view and multi-view scenarios. The experiment results demonstrate superior accuracy and robustness performance over the current state-of-the-art rotation estimation methods, even comparable to multiple bundle adjustment iteration results. Hopefully, this work contributes to even more accurate, efficient and reliable 3D visual computing.
Multi-person human mesh recovery from a single image is a challenging task, hindered by the scarcity of in-the-wild training data. Prevailing in-the-wild human mesh pseudo-ground-truth (pGT) generation pipelines are single-person-centric, where each human is processed individually without joint optimization. This oversight leads to a lack of scene-level consistency, producing individuals with conflicting depths and scales within the same image. To address this, we introduce Depth-conditioned Translation Optimization (DTO), a novel optimization-based method that jointly refines the camera-space translations of all individuals in a crowd. By leveraging anthropometric priors on human height and depth cues from a monocular depth estimator, DTO solves for a scene-consistent placement of all subjects within a principled Maximum a posteriori (MAP) framework. Applying DTO to the 4D-Humans dataset, we construct DTO-Humans, a new large-scale pGT dataset of 0.56M high-quality, scene-consistent multi-person images, featuring dense crowds with an average of 4.8 persons per image. Furthermore, we propose Metric-Aware HMR, an end-to-end network that directly estimates human mesh and camera parameters in metric scale. This is enabled by a camera branch and a novel relative metric loss that enforces plausible relative scales. Extensive experiments demonstrate that our method achieves state-of-the-art performance on relative depth reasoning and human mesh recovery. Code and data will be released publicly.
Magnetic Resonance Imaging (MRI) diagnoses and manages a wide range of diseases, yet long scan times drive high costs and limit accessibility. AI methods have demonstrated substantial potential for reducing scan times, but despite rapid progress, clinical translation of AI often fails. One particular class of failure modes, referred to as implicit data crimes, are a result of hidden biases introduced when MRI datasets incompletely model the MRI physics of the acquisition. Previous work identified data crimes resulting from algorithmic completion of k-space with parallel imaging and drew on simulation to demonstrate the resulting downstream biases. This work proposes a mathematical framework to re-characterize the problem as one of error reduction during interpolation between sets of evaluation coordinates. We establish a generalized matrix-based definition of the reconstruction error upper bound as a function of the input sampling pattern. Experiments on relevant sampling pattern structures demonstrate the relevance of the framework and suggest future directions for analysis of data crimes.