Abstract:Image to image translation is an active area of research in the field of computer vision, enabling the generation of new images with different styles, textures, or resolutions while preserving their characteristic properties. Recent architectures leverage Generative Adversarial Networks (GANs) to transform input images from one domain to another. In this work, we focus on the study of both paired and unpaired image translation across multiple image domains. For the paired task, we used a conditional GAN model, and for the unpaired task, we trained it using cycle consistency loss. We experimented with different types of loss functions, multiple Patch-GAN sizes, and model architectures. New quantitative metrics - precision, recall, and FID score - were used for analysis. In addition, a qualitative study of the results of different experiments was conducted.
Abstract:Automated fact-checking is a crucial task in this digital age. To verify a claim, current approaches majorly follow one of two strategies i.e. (i) relying on embedded knowledge of language models, and (ii) fine-tuning them with evidence pieces. While the former can make systems to hallucinate, the later have not been very successful till date. The primary reason behind this is that fact verification is a complex process. Language models have to parse through multiple pieces of evidence before making a prediction. Further, the evidence pieces often contradict each other. This makes the reasoning process even more complex. We proposed a simple yet effective approach where we relied on entailment and the generative ability of language models to produce ''supporting'' and ''refuting'' justifications (for the truthfulness of a claim). We trained language models based on these justifications and achieved superior results. Apart from that, we did a systematic comparison of different prompting and fine-tuning strategies, as it is currently lacking in the literature. Some of our observations are: (i) training language models with raw evidence sentences registered an improvement up to 8.20% in macro-F1, over the best performing baseline for the RAW-FC dataset, (ii) similarly, training language models with prompted claim-evidence understanding (TBE-2) registered an improvement (with a margin up to 16.39%) over the baselines for the same dataset, (iii) training language models with entailed justifications (TBE-3) outperformed the baselines by a huge margin (up to 28.57% and 44.26% for LIAR-RAW and RAW-FC, respectively). We have shared our code repository to reproduce the results.
Abstract:There has been a lot of progress towards building NLP models that scale to multiple tasks. However, real-world systems contain multiple components and it is tedious to handle cross-task interaction with varying levels of text granularity. In this work, we built an end-to-end Ranking and Question-Answering (QA) system using Forte, a toolkit that makes composable NLP pipelines. We utilized state-of-the-art deep learning models such as BERT, RoBERTa in our pipeline, evaluated the performance on MS-MARCO and Covid-19 datasets using metrics such as BLUE, MRR, F1 and compared the results of ranking and QA systems with their corresponding benchmark results. The modular nature of our pipeline and low latency of reranker makes it easy to build complex NLP applications easily.
Abstract:Accurate information is crucial for democracy as it empowers voters to make informed decisions about their representatives and keeping them accountable. In the US, state election commissions (SECs), often required by law, are the primary providers of Frequently Asked Questions (FAQs) to voters, and secondary sources like non-profits such as League of Women Voters (LWV) try to complement their information shortfall. However, surprisingly, to the best of our knowledge, there is neither a single source with comprehensive FAQs nor a study analyzing the data at national level to identify current practices and ways to improve the status quo. This paper addresses it by providing the {\bf first dataset on Voter FAQs covering all the US states}. Second, we introduce metrics for FAQ information quality (FIQ) with respect to questions, answers, and answers to corresponding questions. Third, we use FIQs to analyze US FAQs to identify leading, mainstream and lagging content practices and corresponding states. Finally, we identify what states across the spectrum can do to improve FAQ quality and thus, the overall information ecosystem. Across all 50 U.S. states, 12% were identified as leaders and 8% as laggards for FIQS\textsubscript{voter}, while 14% were leaders and 12% laggards for FIQS\textsubscript{developer}.
Abstract:Transformer-based models have revolutionized the field of image super-resolution (SR) by harnessing their inherent ability to capture complex contextual features. The overlapping rectangular shifted window technique used in transformer architecture nowadays is a common practice in super-resolution models to improve the quality and robustness of image upscaling. However, it suffers from distortion at the boundaries and has limited unique shifting modes. To overcome these weaknesses, we propose a non-overlapping triangular window technique that synchronously works with the rectangular one to mitigate boundary-level distortion and allows the model to access more unique sifting modes. In this paper, we propose a Composite Fusion Attention Transformer (CFAT) that incorporates triangular-rectangular window-based local attention with a channel-based global attention technique in image super-resolution. As a result, CFAT enables attention mechanisms to be activated on more image pixels and captures long-range, multi-scale features to improve SR performance. The extensive experimental results and ablation study demonstrate the effectiveness of CFAT in the SR domain. Our proposed model shows a significant 0.7 dB performance improvement over other state-of-the-art SR architectures.
Abstract:Jointly learning multiple tasks with a unified model can improve accuracy and data efficiency, but it faces the challenge of task interference, where optimizing one task objective may inadvertently compromise the performance of another. A solution to mitigate this issue is to allocate task-specific parameters, free from interference, on top of shared features. However, manually designing such architectures is cumbersome, as practitioners need to balance between the overall performance across all tasks and the higher computational cost induced by the newly added parameters. In this work, we propose \textit{InterroGate}, a novel multi-task learning (MTL) architecture designed to mitigate task interference while optimizing inference computational efficiency. We employ a learnable gating mechanism to automatically balance the shared and task-specific representations while preserving the performance of all tasks. Crucially, the patterns of parameter sharing and specialization dynamically learned during training, become fixed at inference, resulting in a static, optimized MTL architecture. Through extensive empirical evaluations, we demonstrate SoTA results on three MTL benchmarks using convolutional as well as transformer-based backbones on CelebA, NYUD-v2, and PASCAL-Context.
Abstract:To truly grasp reasoning ability, a Natural Language Inference model should be evaluated on counterfactual data. TabPert facilitates this by assisting in the generation of such counterfactual data for assessing model tabular reasoning issues. TabPert allows a user to update a table, change its associated hypotheses, change their labels, and highlight rows that are important for hypothesis classification. TabPert also captures information about the techniques used to automatically produce the table, as well as the strategies employed to generate the challenging hypotheses. These counterfactual tables and hypotheses, as well as the metadata, can then be used to explore an existing model's shortcomings methodically and quantitatively.
Abstract:There is a parameter ubiquitous throughout the deep learning world: learning rate. There is likewise a ubiquitous question: what should that learning rate be? The true answer to this question is often tedious and time consuming to obtain, and a great deal of arcane knowledge has accumulated in recent years over how to pick and modify learning rates to achieve optimal training performance. Moreover, the long hours spent carefully crafting the perfect learning rate can come to nothing the moment your network architecture, optimizer, dataset, or initial conditions change ever so slightly. But it need not be this way. We propose a new answer to the great learning rate question: the Autonomous Learning Rate Controller. Find it at https://github.com/fastestimator/ARC
Abstract:It is no secret amongst deep learning researchers that finding the right data augmentation strategy during training can mean the difference between a state-of-the-art result and a run-of-the-mill ranking. To that end, the community has seen many efforts to automate the process of finding the perfect augmentation procedure for any task at hand. Unfortunately, even recent cutting-edge methods bring massive computational overhead, requiring as many as 100 full model trainings to settle on an ideal configuration. We show how to achieve even better performance in just 7: with Random Unidimensional Augmentation. Source code is available at https://github.com/fastestimator/RUA
Abstract:Large web-crawled corpora represent an excellent resource for improving the performance of Neural Machine Translation (NMT) systems across several language pairs. However, since these corpora are typically extremely noisy, their use is fairly limited. Current approaches to dealing with this problem mainly focus on filtering using heuristics or single features such as language model scores or bi-lingual similarity. This work presents an alternative approach which learns weights for multiple sentence-level features. These feature weights which are optimized directly for the task of improving translation performance, are used to score and filter sentences in the noisy corpora more effectively. We provide results of applying this technique to building NMT systems using the Paracrawl corpus for Estonian-English and show that it beats strong single feature baselines and hand designed combinations. Additionally, we analyze the sensitivity of this method to different types of noise and explore if the learned weights generalize to other language pairs using the Maltese-English Paracrawl corpus.