This paper studies a challenging scenario in a multiple-input multiple-output (MIMO) integrated sensing and communication (ISAC) system where the locations of the sensing target and the communication user are both unknown and random, while only their probability distribution information is known. In this case, how to fully utilize the spatial resources by designing the transmit beamforming such that both sensing and communication can achieve satisfactory performance statistically is a difficult problem, which motivates the study in this paper. Moreover, we aim to reveal if it is desirable to have similar probability distributions for the target and user locations in terms of the ISAC performance. Firstly, based on only probability distribution information, we establish communication and sensing performance metrics via deriving the expected rate or posterior Cramér-Rao bound (PCRB). Then, we formulate the transmit beamforming optimization problem to minimize the PCRB subject to the expected rate constraint, for which the optimal solution is derived. It is unveiled that the rank of the optimal transmit covariance matrix is upper bounded by the summation of MIMO communication channel matrices for all possible user locations. Furthermore, due to the need to cater to multiple target/user locations, we investigate whether dynamically employing different beamforming designs over different time slots improves the performance. It is proven that using a static beamforming strategy is sufficient for achieving the optimal performance. Numerical results validate our analysis, show that ISAC performance improves as the target/user location distributions become similar, and provide useful insights on the BS-user/-target association strategy.
Diffusion policies have recently emerged as a powerful paradigm for visuomotor control in robotic manipulation due to their ability to model the distribution of action sequences and capture multimodality. However, iterative denoising leads to substantial inference latency, limiting control frequency in real-time closed-loop systems. Existing acceleration methods either reduce sampling steps, bypass diffusion through direct prediction, or reuse past actions, but often struggle to jointly preserve action quality and achieve consistently low latency. In this work, we propose STEP, a lightweight spatiotemporal consistency prediction mechanism to construct high-quality warm-start actions that are both distributionally close to the target action and temporally consistent, without compromising the generative capability of the original diffusion policy. Then, we propose a velocity-aware perturbation injection mechanism that adaptively modulates actuation excitation based on temporal action variation to prevent execution stall especially for real-world tasks. We further provide a theoretical analysis showing that the proposed prediction induces a locally contractive mapping, ensuring convergence of action errors during diffusion refinement. We conduct extensive evaluations on nine simulated benchmarks and two real-world tasks. Notably, STEP with 2 steps can achieve an average 21.6% and 27.5% higher success rate than BRIDGER and DDIM on the RoboMimic benchmark and real-world tasks, respectively. These results demonstrate that STEP consistently advances the Pareto frontier of inference latency and success rate over existing methods.
Segment Anything Model 2 (SAM2) shows excellent performance in video object segmentation tasks; however, the heavy computational burden hinders its application in real-time video processing. Although there have been efforts to improve the efficiency of SAM2, most of them focus on retraining a lightweight backbone, with little exploration into post-training acceleration. In this paper, we observe that SAM2 exhibits sparse perception pattern as biological vision, which provides opportunities for eliminating redundant computation and acceleration: i) In mask decoder, the attention primarily focuses on the foreground objects, whereas the image encoder in the earlier stage exhibits a broad attention span, which results in unnecessary computation to background regions. ii) In memory bank, only a small subset of tokens in each frame contribute significantly to memory attention, and the salient regions exhibit temporal consistency, making full-token computation redundant. With these insights, we propose Efficient-SAM2, which promotes SAM2 to adaptively focus on object regions while eliminating task-irrelevant computations, thereby significantly improving inference efficiency. Specifically, for image encoder, we propose object-aware Sparse Window Routing (SWR), a window-level computation allocation mechanism that leverages the consistency and saliency cues from the previous-frame decoder to route background regions into a lightweight shortcut branch. Moreover, for memory attention, we propose object-aware Sparse Memory Retrieval (SMR), which allows only the salient memory tokens in each frame to participate in computation, with the saliency pattern reused from their first recollection. With negligible additional parameters and minimal training overhead, Efficient-SAM2 delivers 1.68x speedup on SAM2.1-L model with only 1.0% accuracy drop on SA-V test set.
In this letter, a dual-bistatic unmanned aerial vehicles (UAVs) tracking system utilizing downlink Long-Term Evolution (LTE) signals is proposed and demonstrated. Particularly, two LTE base stations (BSs) are exploited as illumination sources. Two passive sensing receivers are deployed at different locations to detect the bistatic Doppler frequencies of the target UAV at different directions according to downlink signals transmitted from their corresponding BSs, such that the velocities of the UAV versus time can be estimated. Hence, the trajectories of the target UAV can be reconstructed. Although both the target UAV and the sensing receivers are around 200 meters away from the illuminating BSs, it is demonstrated by experiments that the tracking errors are below 50 centimeters for 90% of the complicated trajectories, when the distances between the UAV and sensing receivers are less than 30 meters. Note this accuracy is significantly better than the ranging resolution of LTE signals, high-accuracy trajectory tracking for UAV might be feasible via multi-angle bistatic Doppler measurements if the receivers are deployed with a sufficient density.
Discriminative Random Walks (DRWs) are a simple yet powerful tool for semi-supervised node classification, but their theoretical foundations remain fragmentary. We revisit DRWs through the lens of information geometry, treating the family of class-specific hitting-time laws on an absorbing Markov chain as a statistical manifold. Starting from a log-linear edge-weight model, we derive closed-form expressions for the hitting-time probability mass function, its full moment hierarchy, and the observed Fisher information. The Fisher matrix of each seed node turns out to be rank-one, taking the quotient by its null space yields a low-dimensional, globally flat manifold that captures all identifiable directions of the model. Leveraging the geometry, we introduce a sensitivity score for unlabeled nodes that bounds, and in one-dimensional cases attains, the maximal first-order change in DRW betweenness under unit Fisher perturbations. The score can lead to principled strategies for active label acquisition, edge re-weighting, and explanation.
Semantic segmentation in high-resolution agricultural imagery demands models that strike a careful balance between accuracy and computational efficiency to enable deployment in practical systems. In this work, we propose DAS-SK, a novel lightweight architecture that retrofits selective kernel convolution (SK-Conv) into the dual atrous separable convolution (DAS-Conv) module to strengthen multi-scale feature learning. The model further enhances the atrous spatial pyramid pooling (ASPP) module, enabling the capture of fine-grained local structures alongside global contextual information. Built upon a modified DeepLabV3 framework with two complementary backbones - MobileNetV3-Large and EfficientNet-B3, the DAS-SK model mitigates limitations associated with large dataset requirements, limited spectral generalization, and the high computational cost that typically restricts deployment on UAVs and other edge devices. Comprehensive experiments across three benchmarks: LandCover.ai, VDD, and PhenoBench, demonstrate that DAS-SK consistently achieves state-of-the-art performance, while being more efficient than CNN-, transformer-, and hybrid-based competitors. Notably, DAS-SK requires up to 21x fewer parameters and 19x fewer GFLOPs than top-performing transformer models. These findings establish DAS-SK as a robust, efficient, and scalable solution for real-time agricultural robotics and high-resolution remote sensing, with strong potential for broader deployment in other vision domains.
This paper extends an acoustic feedback cancellation system by incorporating multiple decorrelation methods. The baseline system is based on a frequency-domain Kalman filter implemented in a multi-delay structure. The proposed extensions include a variable time delay line, prediction, distortion compensation, and a simplified reverberation model. Each extension is analyzed, and a practical parameter range is defined. While existing literature often focuses on a single extension, such as prediction, to describe an optimal system, this work demonstrates that each individual extension contributes to performance improvements. Furthermore, the combination of all proposed extensions results in a superior system. The evaluation is conducted using publicly available datasets, with performance assessed through system distance metrics and the objective speech quality measure PSEQ.
Over the last decade, explainable AI has primarily focused on interpreting individual model predictions, producing post-hoc explanations that relate inputs to outputs under a fixed decision structure. Recent advances in large language models (LLMs) have enabled agentic AI systems whose behaviour unfolds over multi-step trajectories. In these settings, success and failure are determined by sequences of decisions rather than a single output. While useful, it remains unclear how explanation approaches designed for static predictions translate to agentic settings where behaviour emerges over time. In this work, we bridge the gap between static and agentic explainability by comparing attribution-based explanations with trace-based diagnostics across both settings. To make this distinction explicit, we empirically compare attribution-based explanations used in static classification tasks with trace-based diagnostics used in agentic benchmarks (TAU-bench Airline and AssistantBench). Our results show that while attribution methods achieve stable feature rankings in static settings (Spearman $ρ= 0.86$), they cannot be applied reliably to diagnose execution-level failures in agentic trajectories. In contrast, trace-grounded rubric evaluation for agentic settings consistently localizes behaviour breakdowns and reveals that state tracking inconsistency is 2.7$\times$ more prevalent in failed runs and reduces success probability by 49\%. These findings motivate a shift towards trajectory-level explainability for agentic systems when evaluating and diagnosing autonomous AI behaviour. Resources: https://github.com/VectorInstitute/unified-xai-evaluation-framework https://vectorinstitute.github.io/unified-xai-evaluation-framework
Addressing real-world optimization challenges requires not only advanced metaheuristics but also continuous refinement of their internal mechanisms. This paper explores the integration of machine learning in the form of neural surrogate models into metaheuristics through a recent lens: energy consumption. While surrogates are widely used to reduce the computational cost of expensive objective functions, their combined impact on energy efficiency, algorithmic performance, and solution accuracy remains largely unquantified. We provide a critical investigation into this intersection, aiming to advance the design of energy-aware, surrogate-assisted search algorithms. Our experiments reveal substantial benefits: employing a state-of-the-art pre-trained surrogate can reduce energy consumption by up to 98\%, execution time by approximately 98%, and memory usage by around 99\%. Moreover, increasing the training dataset size further enhances these gains by lowering the per-use computational cost, while static pre-training versus continuous (iterative) retraining have relatively different advantages depending on whether we aim at time/energy or accuracy and general cost across problems, respectively. Surrogates also have a negative impact on costs and accuracy at times, and then they cannot be blindly adopted. These findings support a more holistic approach to surrogate-assisted optimization, integrating energy with time and predictive accuracy into performance assessments.
A quintessential feature of human intelligence is the ability to create ad hoc conventions over time to achieve shared goals efficiently. We investigate how communication strategies evolve through repeated collaboration as people coordinate on shared procedural abstractions. To this end, we conducted an online unimodal study (n = 98) using natural language to probe abstraction hierarchies. In a follow-up lab study (n = 40), we examined how multimodal communication (speech and gestures) changed during physical collaboration. Pairs used augmented reality to isolate their partner's hand and voice; one participant viewed a 3D virtual tower and sent instructions to the other, who built the physical tower. Participants became faster and more accurate by establishing linguistic and gestural abstractions and using cross-modal redundancy to emphasize key changes from previous interactions. Based on these findings, we extend probabilistic models of convention formation to multimodal settings, capturing shifts in modality preferences. Our findings and model provide building blocks for designing convention-aware intelligent agents situated in the physical world.