Abstract:In this letter, a dual-bistatic unmanned aerial vehicles (UAVs) tracking system utilizing downlink Long-Term Evolution (LTE) signals is proposed and demonstrated. Particularly, two LTE base stations (BSs) are exploited as illumination sources. Two passive sensing receivers are deployed at different locations to detect the bistatic Doppler frequencies of the target UAV at different directions according to downlink signals transmitted from their corresponding BSs, such that the velocities of the UAV versus time can be estimated. Hence, the trajectories of the target UAV can be reconstructed. Although both the target UAV and the sensing receivers are around 200 meters away from the illuminating BSs, it is demonstrated by experiments that the tracking errors are below 50 centimeters for 90% of the complicated trajectories, when the distances between the UAV and sensing receivers are less than 30 meters. Note this accuracy is significantly better than the ranging resolution of LTE signals, high-accuracy trajectory tracking for UAV might be feasible via multi-angle bistatic Doppler measurements if the receivers are deployed with a sufficient density.




Abstract:In this paper, a computer-vision-assisted simulation method is proposed to address the issue of training dataset acquisition for wireless hand gesture recognition. In the existing literature, in order to classify gestures via the wireless channel estimation, massive training samples should be measured in a consistent environment, consuming significant efforts. In the proposed CASTER simulator, however, the training dataset can be simulated via existing videos. Particularly, a gesture is represented by a sequence of snapshots, and the channel impulse response of each snapshot is calculated via tracing the rays scattered off a primitive-based hand model. Moreover, CASTER simulator relies on the existing videos to extract the motion data of gestures. Thus, the massive measurements of wireless channel can be eliminated. The experiments demonstrate a 90.8% average classification accuracy of simulation-to-reality inference.